News | Magnetic Resonance Imaging (MRI) | February 01, 2019

Study Assesses Risk of MRI Exams for Patients With Tattoos

European effort marks first prospective study on risk assessment

Study Assesses Risk of MRI Exams for Patients With Tattoos

February 1, 2019 — A new European study concluded that magnetic resonance imaging (MRI) exams pose little risk for people with tattoos, based on data collected from 330 patient scans.  

According to Nikolaus Weiskopf, Ph.D., director at the Max Planck Institute for Human Cognitive and Brain Sciences in Leipzig (MPI CBS), "...the most important questions for us were: Can we conduct our studies with tattooed subjects without hesitation? What restrictions may exist? At the Wellcome Centre for Human Neuroimaging, part of Queen Square Institute of Neurology at University College in London, where I started the study in 2011, there were increasing numbers of volunteers with tattoos. At the time, there simply was not enough data to determine the likelihood of tattoo-related side effects arising from MRI examinations."

Weiskopf’s former colleague in London, Martina Callaghan, completed the study after Weiskopf left London to become director at the MPI CBS in Leipzig. "Based on our investigations, we can now state, on the basis of meaningful numbers, that if a tattooed individual is scanned under the conditions tested in the study, the risk of side effects is very small." the physicist explains.

Indeed, millions of people with tattoos are scanned every year in hospitals and research facilities without any side effects. Until now there has not been a systematic prospective study on how safe it is to be scanned in an MRI scanner with a tattoo. Reports of adverse reactions are usually based on individual cases and describe two different reactions. It is possible that the pigments in tattoos can interact with the static magnetic field of the scanner. Why? The tattoo ink can contain pigments that are ferrous and therefore magnetic. The strong magnetic fields involved in the procedure can interact with these small particles, which in turn can lead to a pulling sensation on the tattooed skin.

However, it is another potential interaction which may represent, from the experts' point of view, a far greater risk. Many of the color pigments are also conductive. This is an issue because in MR imaging, high-frequency magnetic fields are used to generate the images by effectively labeling protons. "High-frequency fields usually have a frequency of a few hundred megahertz. That happens to correspond to the resonance lengths of conductive structures similarly sized as tattoos. In this case, the tattoo may absorb much of the energy of the high-frequency field, which would normally be spread out more widely. It can then happen that the tattoo heats up. In the worst case, this can lead to burns", said Weiskopf.

Together with his colleagues at University College in London, he examined 330 study participants before and after the MRI scan and tested a total of 932 tattoos. The team systematically collected information about their participants' tattoos — how big they were, where they were located and what colors were used. The country of origin was also recorded with most arising in Europe, but also from America, Asia, Africa and Australia. The majority of the ink used was black, but various colors were also registered.

"We found that the majority of the participants did not notice any side effects with tattoos," said Weiskopf. "There was one specific case where the study doctor found that side effects - a tingling sensation on the skin - were related to scanning. However, this unpleasant feeling disappeared within 24 hours without the affected person having required medical treatment."

In order to ensure the participants safety (from potential burns) not just anyone could be scanned for the study — exclusion criteria concerned the size and number of tattoos. For example, a single tattoo was not allowed to exceed 20 centimeters and no more than 5 percent of the body could be covered by tattoos.

The MRI scanners used in the study had a static magnetic field strength of three Tesla, as is common in many clinics today. By comparison, the magnetic field of a rather weak 0.5 Tesla MRI model is 10,000 times stronger than the Earth's magnetic field. These MRI scanners usually have a radiofrequency body coil, which stimulates the proton spins for imaging. The high frequency field of a body coil extends not only over the head, which was scanned in this study, but also the upper body area of the participants and thus on frequently tattooed areas.

According to Weiskopf, the results of the study not only provide information on safety guidelines for research, but can also be helpful for clinical environments. The existing recommendations on how to scan people with tattoos are always based on weighing the risk against the actual benefit of diagnosing a disease. While it should be noted that the results are limited to specific configurations and scanner types, this study adds to the positive safety record of MRI.

For more information: www.nejm.org

Reference

1. Callaghan M.F., Leff A.P., Creasey M., et al. Safety of Tattoos in Persons Undergoing MRI. New England Journal of Medicine, Jan. 31, 2019. DOI: 10.1056/NEJMc1811197

Related Content

International Working Group Releases New Multiple Myeloma Imaging Guidelines

X-ray images such as the one on the left fail to indicate many cases of advanced bone destruction caused by multiple myeloma, says the author of new guidelines on imaging for patients with myeloma and related disorders. Image courtesy of Roswell Park Comprehensive Cancer Center.

News | Computed Tomography (CT) | June 17, 2019
An International Myeloma Working Group (IMWG) has developed the first set of new recommendations in 10 years for...
SyMRI Software Receives FDA Clearance for Use With Siemens MRI Systems
Technology | Magnetic Resonance Imaging (MRI) | June 14, 2019
SyntheticMR announced U.S. Food and Drug Administration (FDA) clearance for clinical use of its SyMRI Image and SyMRI...
A high-fidelity 3-D tractography of the left ventricle heart muscle fibers of a mouse

Figure 1. A high-fidelity 3-D tractography of the left ventricle heart muscle fibers of a mouse from Amsterdam Ph.D. researcher Gustav Strijkers.

News | Magnetic Resonance Imaging (MRI) | June 07, 2019
The Amsterdam University Medical Center has won MR Solutions’ Image of the Year 2019 award for the best molecular...
Study Identifies MRI-Guided Radiation Therapy as Growing Market Segment
News | Image Guided Radiation Therapy (IGRT) | June 06, 2019
Revenues from the magnetic resonance imaging (MRI)-guided radiation therapy systems market exceeded $220 million in...
Ann Arbor Startup Launches Augmented Reality MRI Simulator
Technology | Virtual and Augmented Reality | June 04, 2019
SpellBound, an Ann Arbor startup specializing in augmented reality (AR) tools for children in hospitals, has officially...
AI Biomarker Demonstrates High Predictive Power for Lung Cancer Immunotherapy
News | Artificial Intelligence | May 31, 2019
Lunit announced an abstract presentation of its artificial intelligence (AI) precision medicine research portfolio at...

Photo courtesy of Philips Healthcare

Feature | Radiology Business | May 31, 2019 | By Arjen Radder
Change is a consistent theme in our world today, no matter where you look.
Dynamic Digital Radiography Used to Assess Undifferentiated Dyspnea
News | Digital Radiography (DR) | May 29, 2019
A clinical study presented at the American Thoracic Society (ATS) 2019 annual meeting, May 17-22 in Dallas, described...
Leica Biosystems Receives FDA Clearance for Aperio AT2 DX Digital Pathology System
Technology | Digital Pathology | May 29, 2019
Leica Biosystems has received clearance from the U.S. Food and Drug Administration (FDA) to market its Aperio AT2 DX...
New Blood Test Detects Colorectal Cancer Recurrence Up to 16.5 Months Earlier
News | Oncology Diagnostics | May 28, 2019
A new clinical study shows that Natera's Signatera test identified colorectal cancer recurrence up to 16.5 months...