Technology | December 10, 2014

Siemens’ 501(k)-pending MRI Scanner Combines Cutting-edge Technology with Lower Operating Costs

Product designed to reduced power consumption in standby mode

MRI systems, RSNA 2014, MAGNETOM Amira

Image courtesy of Siemens Healthcare

December 10, 2014 — Siemens Healthcare plans to expand its portfolio of magnetic resonance imaging (MRI) systems to include the Magnetom Amira 1.5 Tesla system, which the company introduced at RSNA 2014. The system is pending FDA 510(k) clearance.

Created with the same technologies that are available on Siemens’ flagship MRI systems, Magnetom Amira is designed to be distinguished by its low operating costs. One reason is the new Eco-Power technology, which enables significant power savings in standby mode. Magnetom Amira is intended to meet the requirements of radiology practices, small and medium-sized hospitals and larger facilities that are interested in a scanner to complement their existing systems.

MAGNETOM Amira is designed to enable customers to operate their MRI systems efficiently, with the potential to shorten many exams and enable many patients to undergo scans in routine applications. Siemens offers a comprehensive package of protocols for Magnetom Amira that is optimized for rapid examinations while maintaining high image quality. In addition, Magnetom Amira is planned to be released with DotGO – Siemens’ latest generation of MRI examination software – to simplify protocol management and offer the right operating sequence for each individual scan to suit requirements. This software is intended to help increase exam consistency, reproducibility and efficiency.

Overall operating costs play a key role in using a scanner economically. Magnetom Amira is designed be the first Siemens MRI scanner to possess Eco-Power technology, which monitors and controls magnet-cooling helium. Activated during standby mode, it monitors the liquefaction cycle and manages the cooling and helium re-liquefaction process more efficiently, potentially enabling a power saving of up to 30 percent in standby mode. In combination with such features as the Zero Helium Boil-Off technology, which prevents helium evaporation, Siemens says the Magnetom Amira can help reduce annual operating costs considerably compared to Siemens’ Magnetom Symphony generation of MRI systems.

To enable high diagnostic reliability and patient comfort, Magnetom Amira is equipped with Siemens’ latest applications and syngo MR E11 software architecture. Hospitals that operate a Magnetom Amira with its 60 cm patient bore alongside other Siemens systems can switch between scanners. In addition, most coils can be exchanged between all current 1.5T MRI systems due to Tim4G technology. The system’s software platform includes the Quiet Suite technology, which is designed to minimize system noise during an MRI examination. With Magnetom Amira, facilities can perform some measurements inaudibly over background noise, which benefits both clinical staff and patients.

For more information: www.siemens.com

 

 

Related Content

AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire)

AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire).

News | Artificial Intelligence | May 29, 2020
May 29, 2020 — GE Healthcare announced U.S.
United Imaging's uMR OMEGA is designed to provide greater access to magnetic resonance imaging (MRI) with the world’s first ultra-wide 75-cm bore 3T MRI.
News | Magnetic Resonance Imaging (MRI) | May 27, 2020
May 27, 2020 — United Imaging's...
A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue

A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue. Image courtesy of Xiandoing Xue, UC Davis

News | Magnetic Resonance Imaging (MRI) | May 26, 2020
May 26, 2020 — Researchers at the University of California, Davis offers a...
Researchers from Tokyo Metropolitan University have surveyed the amount of gadolinium found in river water in Tokyo. Gadolinium is contained in contrast agents given to patients undergoing medical magnetic resonance imaging (MRI) scans, and it has been shown in labs to become toxic when exposed to ultraviolet rays. The researchers found significantly elevated levels, particularly near water treatment plants, highlighting the need for new public policy and removal technologies as MRI become even more commonp

Samples were taken along rivers around Tokyo. Measurements of rare earth element quantities indicate a clearly elevated amount of gadolinium compared to that in natural shale. Graphics courtesy of Tokyo Metropolitan University

News | Magnetic Resonance Imaging (MRI) | May 26, 2020
May 26, 2020 — Researchers from Tokyo Metropolitan...
Advanced imaging data exchange is now live in Colorado due to the partnership of Health Images and the Colorado Regional Health Information Organization

Getty Images

News | Radiology Business | May 18, 2020
May 18, 2020 — 
Experimental Protocol and Representative MRI of Brains at Various Key Points in That Protocol.

Experimental Protocol and Representative MRI of Brains at Various Key Points in That Protocol. (A) Experimental timeline. (B) Representative T2WI (using an 11.7T MRI) of the brain of a postnatal day (PND) 11 pup, 1 day after inducing left HII and prior to hNSC transplantation. Note the beginning of an increasingly intense “water signal” (white) on the left (“HII lesion”). (C) Representative T2WI (using an 11.7T MRI) 3 days post-HII, shortly after implantation of SPIO pre-labeled hNSCs into the contralateral cerebral ventricle (“Lateral Vent”). Note the “HII lesion” on the left becoming hyperintense (white) and the black signal void of the SPIO-labeled hNSCs in the lateral ventricle (black arrow). Red arrows denote the needle track. In contrast to what occurs in the intact brain (Figure S4), in a brain subjected to left HII, the implanted SPIO-labeled hNSCs (black signal void) (black arrow) migrate from the right (“R”) to the left (“L”) hemisphere to enter the lesion. (D and E) Shown here (using a 4.7T MRI) are SPIO-labeled hNSCs (black signal void) (black arrow) at 1 month post-implantation into the contralateral ventricle (D) and, in the same representative animal, at 3 months post-implantation (E)–stably integrated and surrounding a much-reduced residual lesion, with no interval enlargement of the graft or ventricles.

News | Magnetic Resonance Imaging (MRI) | May 13, 2020
May 13, 2020 — Scientists at Sanford Burnham Prebys Medical Discov...
Axial (A) and coronal (B) CT of the abdomen and pelvis with IV contrast in a 57-year-old man with a high clinical suspicion for bowel ischemia. There was generalized small bowel distension and segmental thickening (arrows), with adjacent mesenteric congestion (thin arrow in B), and a small volume of ascites (* in B). Findings are nonspecific but suggestive of early ischemia or infection.

Axial (A) and coronal (B) CT of the abdomen and pelvis with IV contrast in a 57-year-old man with a high clinical suspicion for bowel ischemia. There was generalized small bowel distension and segmental thickening (arrows), with adjacent mesenteric congestion (thin arrow in B), and a small volume of ascites (* in B). Findings are nonspecific but suggestive of early ischemia or infection. Image courtesy of RSNA

News | Coronavirus (COVID-19) | May 11, 2020
May 11, 2020 — Patients with COVID-19 can have b
Whole body diffusion-weighted magnetic resonance imaging (DW MRI) may aid in the assessment of cancer treatment response in children and youth at much lower levels of radiation than current approaches, suggests a small study funded by the National Institutes of Health.
News | Pediatric Imaging | May 05, 2020
May 5, 2020 — Whole body diffusion-weighted magnetic resonance imaging (DW MRI) may aid in the assessment of...
Figure 4 for the study. Images of a 65-year-old man (patient 6). (a) Cardiac MRI perfusion shows perfusion deficit of anterior/anterolateral wall attributed to left anterior descending artery/left circumflex artery (*). (b) CT coronary angiography. (c) Coronary angiography, left anterior oblique projection with caudal angulation. (d) Three-dimensional image fusion helped refine diagnosis: perfusion deficits (*) were most likely caused by narrow first diagonal branch and its first, stented side branch.

Figure 4 for the study. Images of a 65-year-old man (patient 6). (a) Cardiac MRI perfusion shows perfusion deficit of anterior/anterolateral wall attributed to left anterior descending artery/left circumflex artery (*). (b) CT coronary angiography. (c) Coronary angiography, left anterior oblique projection with caudal angulation. (d) Three-dimensional image fusion helped refine diagnosis: perfusion deficits (*) were most likely caused by narrow first diagonal branch and its first, stented side branch (arrowhead). Retrospectively, denoted lesion could also be found at CT coronary angiography and coronary angiography (arrowheads in b and c, respectively). CT FFR = CT-derived fractional flow reserve, LGE = late gadolinium enhancement. Image courtesy of RSNA, Radiology.

News | Cardiac Imaging | May 04, 2020
May 4, 2020 – A new technique that combines computed tomography (CT) and magnetic resonance imaging MRI can bolster c
Two people together in an MRI Scanner along with the accompanying image of their brains

Two people together in an MRI Scanner along with the accompanying image of their brains. Image courtesy of Ville Renvall/ Aalto University

News | Magnetic Resonance Imaging (MRI) | April 30, 2020
April 30, 2020 — Researchers at Aalto University and...