Role of P3HT MW and polyimide substrate thickness on the functionality of curved X-ray detectors. Loading and unloading P–h curves for the a) NP-BHJ films containing different P3HT MW and b) polyimide substrates of different thicknesses. Misfit strain as a function of both radius of curvature and substrate thickness for NP-BHJ film based on c) P3HT A and d) P3HT D. Misfit strain between the film and substrate increases when thinner substrates and lower P3HT MW are used. Photograph indicating the tendency of

December 29, 2021 — Researchers at the University of Surrey have identified key design rules for making curved X-ray detectors, bringing clearer and safer X-rays a step closer to reality.

Although the use of digital flat panel detectors has enabled radiographers to examine X-rays much more quickly compared with old-fashioned X-ray sensitive photographic films and to make quicker diagnoses, flat panels are ill-suited to the complex shape and geometry of the human body. The reliance purely on flat panels means there is unavoidable distortion around the edges of images. Flat panels also prevent an accurate registration of the X-ray dose delivered, a key feature towards enabling safer radiation therapy and minimizing secondary tumors.

Efforts to create flexible detectors have so far been unsuccessful owing to the brittle characteristics of the rigid inorganic semiconductors used to make them. Some curvature has been achieved through using a thinner layer of semiconductor, but this has compromised performance levels and resulted in poor quality images.

However, in a study published in the peer-reviewed journal Advanced Science, researchers from the Advanced Technology Institute at the University of Surrey, in collaboration with Italy’s University of Bologna, the National Physical Laboratory and Sheffield University, identify design rules for a special class of “inorganic in organic” semiconductors. By tuning the molecular weight of the bismuth oxide nanoparticle sensitised organic semiconductors to lengthen the polymer chains, the researchers are paving the way towards making more robust, curved digital detectors with high sensitivity, or digital film.

Prabodhi Nanayakkara, lead author of the study and PhD student at the University of Surrey, said:

“Our curved detector concept has shown exceptional mechanical robustness and enables bending radii as small as 1.3mm. The use of organic or ‘inorganic in organic’ semiconductors is also far more cost effective than conventional inorganic semiconductors made from silicon or germanium, which require expensive crystal growth methods. Our approach potentially offers a significant commercial advantage.”

Professor Ravi Silva, Director of Surrey’s Advanced Technology Institute, said:

“The technology we’re demonstrating will help create a revolutionary new high sensitivity X-ray detector that is scalable, due to the design and materials adopted. This technology has huge potential in medical applications and other X-ray uses, so we’re working with a spinout company, SilverRay, and hope to turn this technology into the X-ray detector of choice for high sensitivity, high resolution, flexible large area detectors.”

For more information: www.surrey.ac.uk/


Related Content

News | Magnetic Resonance Imaging (MRI)

April 17, 2024 — Hyperfine, Inc., a groundbreaking health technology company that has redefined brain imaging with the ...

Time April 17, 2024
arrow
News | Radiation Dose Management

April 9, 2024 — Mirion Dosimetry Services, a Mirion Medical company, today announced commercial availability of its ...

Time April 09, 2024
arrow
News | Population Health

April 4, 2024 — A new study found increased coronary vessel wall thickness that was significantly associated with ...

Time April 04, 2024
arrow
News | Radiation Oncology

April 2, 2024 — In a 10-center study, microwave ablation offered progression free survival rates and fewer complications ...

Time April 02, 2024
arrow
News | Artificial Intelligence

March 28, 2024 — As artificial intelligence (AI) makes its way into cancer care – and into discussions between ...

Time March 28, 2024
arrow
News | Prostate Cancer

March 27, 2024 — A minimally invasive treatment using MRI and transurethral ultrasound instead of surgery or radiation ...

Time March 27, 2024
arrow
News | ACR

March 21, 2024 — The Advanced Research Projects Agency for Health (ARPA-H) has appointed American College of Radiology ...

Time March 21, 2024
arrow
News | Breast Imaging

March 20, 2024 — IceCure Medical Ltd., developer of the ProSense System, a minimally-invasive cryoablation technology ...

Time March 20, 2024
arrow
News | RSNA

March 19, 2024 — Radiology Advances, the first exclusively open-access journal of the Radiological Society of North ...

Time March 19, 2024
arrow
Videos | Radiation Oncology

In the conclusion of this 3-part video series on recent advancements in diagnostic radiology, current editorial advisory ...

Time March 19, 2024
arrow
Subscribe Now