Role of P3HT MW and polyimide substrate thickness on the functionality of curved X-ray detectors. Loading and unloading P–h curves for the a) NP-BHJ films containing different P3HT MW and b) polyimide substrates of different thicknesses. Misfit strain as a function of both radius of curvature and substrate thickness for NP-BHJ film based on c) P3HT A and d) P3HT D. Misfit strain between the film and substrate increases when thinner substrates and lower P3HT MW are used. Photograph indicating the tendency of

December 29, 2021 — Researchers at the University of Surrey have identified key design rules for making curved X-ray detectors, bringing clearer and safer X-rays a step closer to reality.

Although the use of digital flat panel detectors has enabled radiographers to examine X-rays much more quickly compared with old-fashioned X-ray sensitive photographic films and to make quicker diagnoses, flat panels are ill-suited to the complex shape and geometry of the human body. The reliance purely on flat panels means there is unavoidable distortion around the edges of images. Flat panels also prevent an accurate registration of the X-ray dose delivered, a key feature towards enabling safer radiation therapy and minimizing secondary tumors.

Efforts to create flexible detectors have so far been unsuccessful owing to the brittle characteristics of the rigid inorganic semiconductors used to make them. Some curvature has been achieved through using a thinner layer of semiconductor, but this has compromised performance levels and resulted in poor quality images.

However, in a study published in the peer-reviewed journal Advanced Science, researchers from the Advanced Technology Institute at the University of Surrey, in collaboration with Italy’s University of Bologna, the National Physical Laboratory and Sheffield University, identify design rules for a special class of “inorganic in organic” semiconductors. By tuning the molecular weight of the bismuth oxide nanoparticle sensitised organic semiconductors to lengthen the polymer chains, the researchers are paving the way towards making more robust, curved digital detectors with high sensitivity, or digital film.

Prabodhi Nanayakkara, lead author of the study and PhD student at the University of Surrey, said:

“Our curved detector concept has shown exceptional mechanical robustness and enables bending radii as small as 1.3mm. The use of organic or ‘inorganic in organic’ semiconductors is also far more cost effective than conventional inorganic semiconductors made from silicon or germanium, which require expensive crystal growth methods. Our approach potentially offers a significant commercial advantage.”

Professor Ravi Silva, Director of Surrey’s Advanced Technology Institute, said:

“The technology we’re demonstrating will help create a revolutionary new high sensitivity X-ray detector that is scalable, due to the design and materials adopted. This technology has huge potential in medical applications and other X-ray uses, so we’re working with a spinout company, SilverRay, and hope to turn this technology into the X-ray detector of choice for high sensitivity, high resolution, flexible large area detectors.”

For more information: www.surrey.ac.uk/


Related Content

News | Radiology Business

July 25, 2024 — Immunis, Inc., a clinical-stage biotech developing groundbreaking secretome therapeutics for age and ...

Time July 25, 2024
arrow
News | Digital Radiography (DR)

July 18, 2024 — At the Annual Meeting of AHRA (the Association for Medical Imaging Management), Agfa Radiology Solutions ...

Time July 18, 2024
arrow
News | Radiation Oncology

July 11, 2024 — The American Society for Radiation Oncology (ASTRO) issued the following statement from Jeff M ...

Time July 11, 2024
arrow
Feature | Radiation Oncology | By Christine Book

News emerging from several leading organizations and vendors in the radiation therapy arena came in at a fast pace in ...

Time July 09, 2024
arrow
News | Radiation Oncology

July 9, 2024 — Insights from the latest Mordor Intelligence report, “Radiotherapy Market Size & Share Analysis - Growth ...

Time July 09, 2024
arrow
News | Prostate Cancer

July 5, 2024 — Lantheus Holdings, Inc., a leading radiopharmaceutical-focused company committed to enabling clinicians ...

Time July 05, 2024
arrow
News | Radiology Business

July 3, 2024 — The American Society of Radiologic Technologists has launched the BeRAD Professionalism Award to ...

Time July 03, 2024
arrow
News | Prostate Cancer

July 2, 2024 — A new editorial paper was published in Oncoscience (Volume 11) on May 20, 2024, entitled, “Deep learning ...

Time July 02, 2024
arrow
News | Interventional Radiology

June 21, 2024 — GE HealthCare, a leading global medical technology, pharmaceutical diagnostics, and digital solutions ...

Time June 21, 2024
arrow
News | Artificial Intelligence

June 18, 2024 — The advancement of Artificial Intelligence (AI) in healthcare to support diagnostic decision making ...

Time June 18, 2024
arrow
Subscribe Now