News | Artificial Intelligence | August 10, 2017

RSNA Announces Pediatric Bone Age Machine Learning Challenge

Participants will design algorithms to assess bone age from pediatric radiographs; results will be presented at RSNA 2017 annual meeting

RSNA Announces Pediatric Bone Age Machine Learning Challenge

August 10, 2017 — The Radiological Society of North America (RSNA) is organizing a challenge intended to show the application of machine learning and artificial intelligence on medical imaging and the ways in which these emerging tools and methodologies may improve diagnostic care.

The RSNA Pediatric Bone Age Machine Learning Challenge addresses a familiar image analysis activity for pediatric radiologists: assessment of bone age from hand radiographs of pediatric patients used to evaluate growth and diagnose developmental disorders. The Challenge uses a dataset of hand radiographs provided by a consortium of leading research institutions — Stanford University, the University of California, Los Angeles and the University of Colorado — that have associated bone age assessments provided by multiple expert observers.

Participants in the challenge will be judged by how well the bone age evaluations produced by their algorithms accord with the expert observers’ evaluations. Participants will have the opportunity to directly compare their algorithms in a structured way using this carefully curated dataset. The RSNA Machine Learning Challenge organizing committee will select a small group of the most successful entries for recognition at the RSNA annual meeting, Nov. 26-Dec. 1 in Chicago. Recognition of Challenge participants will be part of a broad range of educational events and exhibits focusing on machine learning at the RSNA annual meeting. 

 The milestone activities scheduled for the Challenge include:

  • Training data phase: Aug. 1-30
  • Leader board phase: Sept. 1-Oct. 7
  • Submission of results: Oct. 7-15
  • Review and confirmation of results: Oct. 15
  • Notification of awardees: Oct. 15
  • Public announcement of results: Monday, Nov. 27 at the RSNA 2017 annual meeting

At the challenge site, prospective participants may review the terms and conditions, evaluation criteria and other details of participation as well as, register to participate and download the training dataset to begin the Challenge.

The Challenge is hosted on the MedICI platform (built by CodaLab) provided by Jayashree Kalpathy-Cramer, Ph.D., and Massachusetts General Hospital, supported through NIH grants and a contract from Leidos.

For more information: www.rsnachallenges.cloudapp.net

Related Content

DR 800 multi-purpose digital imaging system with Dynamic Musica
News | Digital Radiography (DR) | July 20, 2018
Agfa displayed the new DR 800 multi-purpose digital imaging system with Dynamic ...

Image courtesy of Philips Healthcare

News | Clinical Trials | July 19, 2018
The use of computed tomography (CT) scans has increased dramatically over the last two decades. CT scans greatly...
Fujifilm to Host Pediatric Imaging Best Practices Symposium at AHRA 2018
News | Pediatric Imaging | July 18, 2018
Fujifilm Medical Systems U.S.A. Inc. announced that it will offer educational opportunities and exhibit its latest...
CT Decision Instrument Reliably Guides Pediatric Blunt Trauma imaging Decisions

This is a four-site prospective observational cohort. Image courtesy of Kirsty Challen, B.Sc., MBCHB, MRES, Ph.D., Lancashire Teaching Hospitals, United Kingdom.

News | Clinical Decision Support | July 18, 2018
A new study finds The Pediatric NEXUS Head Computed Tomography (CT) Decision Instrument (DI) reliably identifies blunt...
Study Points to Need for Performance Standards for EHR Usability and Safety
News | Electronic Medical Records (EMR) | July 18, 2018
A novel new study provides compelling evidence that the design, development and implementation of electronic health...
Artificial Intelligence Provides Faster, Clearer MRI Scans

A new artificial-intelligence-based approach to image reconstruction, called AUTOMAP, yields higher quality images from less data, reducing radiation doses for CT and PET and shortening scan times for MRI. Shown here are MR images reconstructed from the same data with conventional approaches, at left, and AUTOMAP, at right. Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital

News | Artificial Intelligence | July 17, 2018
A research team with funding from the National Institute for Biomedical Imaging and Bioengineering (NIBIB) has...
Guerbet, IBM Watson Health Partner on Artificial Intelligence for Liver Imaging
News | Clinical Decision Support | July 10, 2018
Guerbet announced it has signed an exclusive joint development agreement with IBM Watson Health to develop an...
EchoMD AutoEF Software Improves Variability in Ejection Fraction Estimation
News | Cardiovascular Ultrasound | June 27, 2018
A recent study conducted with the Minneapolis Heart Institute found that Bay Labs’ EchoMD AutoEF deep learning software...
Children with Kidney Disease Show Blood Flow Changes in Brain
News | Neuro Imaging | June 25, 2018
Blood flow changes in the brains of children, adolescents and young adults with chronic kidney disease may explain why...
FDA Clears Bay Labs' EchoMD AutoEF Software for AI Echo Analysis
Technology | Cardiovascular Ultrasound | June 19, 2018
Cardiovascular imaging artificial intelligence (AI) company Bay Labs announced its EchoMD AutoEF software received 510(...
Overlay Init