News | Computed Tomography (CT) | December 01, 2020

Researchers Use Radiomics in Forensic Examination of Charred Human Bones

 The study "Will We Solve Crimes with Radiomics? Results of an Experimental Study on Charred Human Bone Samples," was presented at the Virtual Radiological Society of North America's 2020 conference (RSNA20). Radiomics, which extracts data from clinical images, can be reliably used to assess changes in the bone structure due to fire exposure.

December 1, 2020 — The study "Will We Solve Crimes with Radiomics? Results of an Experimental Study on Charred Human Bone Samples," was presented at the Virtual Radiological Society of North America's 2020 conference (RSNA20). Radiomics, which extracts data from clinical images, can be reliably used to assess changes in the bone structure due to fire exposure. Specific features can be applied to determine the interval of combustion.

Combustion is often applied to conceal corpses after murders. Therefore, establishing the timing of the combustion can provide fundamental details in forensic investigations. This study assesses the role of radiomics in characterizing time-related changes occurring in human bone samples exposed to fire and proposes a method that can be applied to provide additional information useful in determining the time and cause of death.

Fifteen samples of human fibulae were examined by a high-resolution micro-CT before and after direct exposure to fire for three combustion intervals. (Three samples were excluded after fragmentation during the second combustion.) From each sample, at each combustion interval, bone density and volume and 55 radiomic features were extracted. The results showed that radiomics was able to detect changes in the bone samples dependent on time of exposure to the fire.

The authors include Amalia Lupi, M.D., Presenter, Arianna Giorgetti, Guido Viel, M.D., Ph.D., Giovanni Cecchetto, M.D., Roberto Stramare, M.D., Chiara Giraudo, M.D., Ph.D.

For more information: www.rsna.org

Related Content

Guerbet announced the launch of OptiProtect 3S, a new range of technical services for its injection solutions. OptiProtect 3S is designed to support imaging centers in the daily use and protection of their injection solutions.
News | Contrast Media Injectors | February 25, 2021
February 25, 2021 — Guerbet announced the launch of ...
Advanced technologies and applications such as point-of-care, pediatrics, dry-magnets, compact MRI and fusion imaging are driving global market
News | Magnetic Resonance Imaging (MRI) | February 24, 2021
February 24, 2021 — Frost & Sullivan's recent analysis, Technological Advancements and Emerging Applications in t
55-year-old woman who underwent screening mammogram and ultrasound 7 days after first COVID-19 vaccination dose. Screening mammogram and US demonstrated unilateral left axillary lymph node with cortical thickness of 5 mm on ultrasound (not shown). BI-RADS category 0 was assigned. Ultrasound from diagnostic work-up performed 7 days later showed no change in lymph node size. BI-RADS 3 was assigned. #COVIDvaccine #COVID19

55-year-old woman who underwent screening mammogram and ultrasound 7 days after first COVID-19 vaccination dose. Screening mammogram and US demonstrated unilateral left axillary lymph node with cortical thickness of 5 mm on ultrasound (not shown). BI-RADS category 0 was assigned. Ultrasound from diagnostic work-up performed 7 days later showed no change in lymph node size. BI-RADS 3 was assigned.

News | Breast Imaging | February 24, 2021
Detroit-based magnetic resonance imaging (MRI) technology company SpinTech, Inc. has acquired medical-imaging research and technology developer Magnetic Resonance Innovations, Inc. (MR Innovations).
News | Magnetic Resonance Imaging (MRI) | February 24, 2021
February 24, 2021 — Detroit-based magnetic resonance...
Findings indicate that PPC and GG are highly predictive of overall upstaging by PSMA PET/CT for patients with high-risk prostate cancer

Image courtesy of UCLA Health

News | PET-CT | February 23, 2021
February 23, 2021 — A...
icobrain cva allows the quantitative assessment of tissue perfusion by reporting the volume of core and perfusion lesion by quantifying Tmax abnormality and CBF abnormality together with the mismatch volume and ratio
News | Artificial Intelligence | February 23, 2021
February 23, 2021 — icometrix, world leader in imaging...
Axial FLAIR MR image shows T2 prolongation in bilateral middle cerebellar peduncles (arrows). Findings were associated with restricted diffusion and areas of T1 hypointense signal without enhancement or abnormal susceptibility. Image courtesy of American Roentgen Ray Society (ARRS), American Journal of Roentgenology (AJR)

Axial FLAIR MR image shows T2 prolongation in bilateral middle cerebellar peduncles (arrows). Findings were associated with restricted diffusion and areas of T1 hypointense signal without enhancement or abnormal susceptibility. Image courtesy of American Roentgen Ray Society (ARRS), American Journal of Roentgenology (AJR)

News | Coronavirus (COVID-19) | February 22, 2021
February 22, 2021 — According to an...
Examples of the imaging performance of XPCI-CT (b,e) compared to conventional specimen radiography (a,d) and benchmarked against histopathology (c,f). he top row focuses on the similarity between the XPCI-CT slice in (b) and the histological slice in (c). Arrow 1 indicates margin involvement, arrow 2 a variation in density in the internal structure of the tumour mass, arrow 3 tumour-induced inflammation. All this is confirmed by the histological slice in (c), and hardly visible in the conventional image in

Examples of the imaging performance of XPCI-CT (b,e) compared to conventional specimen radiography (a,d) and benchmarked against histopathology (c,f). he top row focuses on the similarity between the XPCI-CT slice in (b) and the histological slice in (c). Arrow 1 indicates margin involvement, arrow 2 a variation in density in the internal structure of the tumour mass, arrow 3 tumour-induced inflammation. All this is confirmed by the histological slice in (c), and hardly visible in the conventional image in (a). The bottom row focuses on the detection of small calcifications, a key feature in DCIS. These are undetectable in (d), detected in (e), enhanced in the maximum intensity projection (MIP) image at the bottom of (f), and confirmed by histopathology in the top part of (f). The scale bar [shown in (b) and (e)] is the same for all images apart from (f), which has its own scale. Red arrows in (e) and (f) indicate the microcalcifications. Image courtesy of Professor Alessandro Olivo

News | Breast Imaging | February 22, 2021
February 22, 2021 — A new X-ray imaging scanne