News | Radiation Therapy | July 09, 2019

Researchers Use Artificial Intelligence to Deliver Personalized Radiation Therapy

Newly published Cleveland Clinic-led research first to use medical scans to inform dose delivery

Researchers Use Artificial Intelligence to Deliver Personalized Radiation Therapy

July 9, 2019 — New Cleveland Clinic-led research shows that artificial intelligence (AI) can use medical scans and health records to personalize the dose of radiation therapy used to treat cancer patients.

Published in The Lancet Digital Health, the research team developed an AI framework based on patient computerized tomography (CT) scans and electronic health records. This new AI framework is the first to use medical scans to inform radiation dosage, moving the field forward from using generic dose prescriptions to more individualized treatments.

Currently, radiation therapy is delivered uniformly. The dose delivered does not reflect differences in individual tumor characteristics or patient-specific factors that may affect treatment success. The AI framework begins to account for this variability and provides individualized radiation doses that can reduce the treatment failure probability to less than 5 percent.

“While highly effective in many clinical settings, radiotherapy can greatly benefit from dose optimization capabilities,” said lead author Mohamed Abazeed, M.D., Ph.D., a radiation oncologist at Cleveland Clinic’s Taussig Cancer Institute and a researcher at the Lerner Research Institute. “This framework will help physicians develop data-driven, personalized dosage schedules that can maximize the likelihood of treatment success and mitigate radiation side effects for patients.”  

The framework was built using CT scans and the electronic health records of 944 lung cancer patients treated with high-dose radiation. Pre-treatment scans were input into a deep learning model, which analyzed the scans to create an image signature that predicts treatment outcomes. Using sophisticated mathematical modeling, this image signature was combined with data from patient health records – which describe clinical risk factors – to generate a personalized radiation dose.

“The development and validation of this image-based, deep-learning framework is exciting because not only is it the first to use medical images to inform radiation dose prescriptions, but it also has the potential to directly impact patient care,” said Abazeed. “The framework can ultimately be used to deliver radiation therapy tailored to individual patients in everyday clinical practices.”

There are several other factors that set this first-of-its-kind framework apart from other similar clinical machine learning algorithms and approaches. The technology developed by the team uses an artificial neural network that merges classical approaches of machine learning with the power of a modern neural network. The network determines how much prior knowledge to use to guide predictions about treatment failure. The extent that prior knowledge informs the model is tunable by the network. This hybrid approach is ideal for clinical applications since most clinical datasets in individual hospitals are more modest in sample size compared to non-clinical datasets used to make other well-known AI predictions (i.e. online shopping or ride-sharing).

Additionally, this framework was built using one of the largest datasets for patients receiving lung radiotherapy, rendering greater accuracy and limiting false findings. Lastly, each clinical center can utilize their own CT datasets to customize the framework and tailor it to their specific patient population.

“Machine learning tools, including deep learning, are poised to play an important role in healthcare,” said Abazeed. “This image-based information platform can provide the ability to individualize multiple cancer therapies but more immediately is a leap forward in radiation precision medicine.”

This study, which was done in collaboration with Siemens Healthcare, was funded by a National Institutes of Health grant to Abazeed, the National Cancer Institute, American Lung Association, Siemens Healthcare and VeloSano (Cleveland Clinic’s flagship philanthropic initiative) to advance cancer research.

Watch the VIDEO: Radiation Versus Surgery for Non-Small Cell Lung Cancer

For more information: www.thelancet.com/digital-health

Reference

1. Lou B., Doken S., Zhuang T., et al. An image-based deep learning framework for individualising radiotherapy dose: a retrospective analysis of outcome prediction. The Lancet Digital Health, July 2019. https://doi.org/10.1016/S2589-7500(19)30058-5

Related Content

HealthMyne, a pioneer in applied radiomics, announced today that peer-reviewed research recently published in the journal Cancers has demonstrated the ability of its radiomics technology to identify biomarkers that predict whether patients with lung adenocarcinoma would benefit from immunotherapy.

Semi-automatic lesion identification: (A) Manual ROI indication. In blue, it is possible to observe the axes that cross the lesion manually delineated by the radiologist on a plane of the MPR. The intensity of the lesion boundary (estimated) is represented with a red outline. (B) Additional axes can be dragged onto other orthogonal MPR views. From left to right, it is possible to observe the initial long axis outlined by the radiologist and the 2D contours on the axial, coronal and sagittal views of the lesion used as a starting point for the RPM algorithms. (C) Resulting 3D contour of the lesion (in blue).

News | Radiomics | September 21, 2021
September 21, 2021 —  HealthMyne, a pioneer in applied radiomics, announced today that peer-reviewed ...
Non-oncology doctors’ knowledge of oncology is frequently not up to date, with risks in the communication with patients  

Getty Images

News | Radiation Oncology | September 20, 2021
September 20, 2021 — The rapid pace of developments in the oncology field, mainly brought by cancer immunotherapy, me
News | Breast Imaging | September 20, 2021
September 20, 2021 — ImageCare Centers is unveiling its new “PINK Better Mammo” service with the addition of...
IBA (Ion Beam Applications S.A., EURONEXT), a world leader in particle accelerator technology, and SCK CEN (Belgian Nuclear Research Center) announced a strategic R&D partnership to enable the production of Actinimum-225 (225Ac), a novel radioisotope which has significant potential in the treatment of cancer.
News | Radiation Oncology | September 17, 2021
September 17, 2021 — IBA (Ion Beam Applications S.A., EURONEXT), a world leader in particle accelerator technology, a
This is an example of 3-D ultrasound imaging on a breast, designed to help increase efficiency and diagnostic accuracy in any practice. Image courtesy of Hologic.

This is an example of TriVu ultrasound imaging on a breast, designed to help increase efficiency and diagnostic accuracy in any practice. Image courtesy of Hologic.

Feature | Breast Imaging | September 15, 2021 | By Jennifer Meade
The...
While the Mammography Quality Standards Act (MQSA) and the introduction of EQUIP (Enhancing Quality Using the Inspection Program) have been successful in standardizing and enhancing mammographic imaging quality, inadequate breast positioning can dramatically impact the ability of radiologists and technicians to quickly and accurately detect breast cancer and potentially malignant lesions in their patients

Getty Images

Feature | Mammography | September 15, 2021 | By Christopher Austin, M.D. and Randy D. Hicks, M.D., MBA
Revised guidelines for lung cancer screening eligibility are perpetuating disparities for racial/ethnic minorities, according to a new study in Radiology.

Getty Images

News | Lung Imaging | September 15, 2021
September 15, 2021 — Revised guidelines for...
To get more flexibility and cost savings from storage, healthcare organizations are increasing their investments in the cloud
Feature | Information Technology | September 15, 2021 | By Kumar Goswami
Healthcare organizations today are storing petabytes of medical imaging data — lab slides,...