News | June 03, 2014

Researchers Develop Training For Brain Patterns of Empathy Using Functional MRI

June 3, 2014 — Research conducted by a group of neuroscientists has demonstrated for the first time that it is possible to train brain patterns associated with empathic feelings – more specifically, tenderness. The research showed that volunteers who received neurofeedback about their own brain activity patterns whilst being scanned inside a functional magnetic resonance imaging (fMRI) machine were able to change brain network function of areas related to tenderness and affection felt toward loved ones. These significant findings could open new possibilities for treatment of clinical situations, such as antisocial personality disorder and postpartum depression.

In Ridley Scott's film Blade Runner, based on the science fiction book Do androids dream of electric sheep? by Philip K. Dick, empathy-detection devices are employed to measure tenderness or affection emotions felt toward others (called "affiliative" emotions). Despite recent advances in neurobiology and neurotechnology, it is unknown whether brain signatures of affiliative emotions can be decoded and voluntarily modulated.

The article, entitled "Voluntary enhancement of neural signatures of affiliative emotion using fMRI neurofeedback" published in PLOS ONE, is the first study to demonstrate through a neurotechnology tool, real-time neurofeedback using fMRI, the possibility to help the induction of empathic brain states.

The authors conducted this research at the D'Or Institute for Research and Education in Rio de Janeiro, where a computational tool was designed and used to allow the participants to modulate their own brain activity related to affiliative emotions and enhance this activity. This method employed pattern-detection algorithms, called "support vector machines" to classify complex activity patterns arising simultaneously from tenths of thousands of voxels (the 3-D equivalent of pixels) inside the participants' brains.

Volunteers who received real-time information of their ongoing neural activity could change brain network function among connected areas related to tenderness and affection felt toward loved ones, while the control group who performed the same fMRI task without neurofeedback did not show such improvement.

Thus, it was demonstrated that those who received a "real" feedback were able to "train" specific brain areas related to the experience of affiliative emotions that are key for empathy. These findings can lead the way to new opportunities to investigate the use of neurofeedback in conditions associated with reduced empathy and affiliative feelings, such as antisocial personality disorders and post-partum depression.

For more information: www.idor.org/en/

Related Content

Philips Introduces Technology Maximizer Program for Imaging Equipment Upgrades
Technology | Imaging | January 17, 2018
January 17, 2018 — Philips recently announced the launch of Technology Maximizer, a cross-modality program designed t
Russian Team Developing New Technology to Significantly Reduce MRI Research Costs
News | Magnetic Resonance Imaging (MRI) | January 16, 2018
January 16, 2018 — Researchers from the NUST MISIS Engineering Center for Industrial Technologies in Russia have deve
Transpara Deep Learning Software Matches Experienced Radiologists in Mammogram Reading
News | Computer-Aided Detection Software | January 12, 2018
Deep learning and artificial intelligence improves the efficiency and accuracy of reading mammograms, according to...
Fat Distribution in Women and Men Provides Clues to Heart Attack Risk
News | Women's Health | January 11, 2018
January 11, 2018 – It’s not the amount of fat in your body but where it is stored that may increase your risk for hea
Smartphone Addiction Creates Imbalance in Brain
News | Mobile Devices | January 11, 2018
Researchers have found an imbalance in the brain chemistry of young people addicted to smartphones and the internet,...
Emergency Radiologists See Inner Toll of Opioid Use Disorders

Rates of Imaging Positivity for IV-SUDs Complications. Image courtesy of Efren J. Flores, M.D.

News | Clinical Study | January 11, 2018
January 11, 2018 – Emergency radiologists are seeing a high prevalence of patients with complications related to opio
Minimally Invasive Treatment Provides Relief from Back Pain

Lumbar spine MRI showing disc herniation and nerve root at baseline and one month after treatment

News | Interventional Radiology | January 11, 2018
The majority of patients were pain free after receiving a new image-guided pulsed radiofrequency treatment for low back...
CT Shows Enlarged Aortas in Former Pro Football Players

3-D rendering from a cardiac CT dataset demonstrating mild dilation of the ascending aorta.

News | Computed Tomography (CT) | January 11, 2018
Former National Football League (NFL) players are more likely to have enlarged aortas, a condition that may put them at...
Study Finds No Evidence that Gadolinium Causes Neurologic Harm

MR images through, A, C, E, basal ganglia and, B, D, F, posterior fossa at level of dentate nucleus. Images are shown for, A, B, control group patient 4, and the, C, D, first and, E, F, last examinations performed in contrast group patient 13. Regions of interest used in quantification of signal intensity are shown as dashed lines for globus pallidus (green), thalamus (blue), dentate nucleus (yellow), and pons (red).

News | Contrast Media | January 11, 2018
January 11, 2018 — There is no evidence that accumulation in the brain of the element gadolinium speeds cognitive dec

Size comparison between 3-D printed prosthesis implant and a penny.

News | 3-D Printing | January 11, 2018
January 11, 2018 — Researchers using...
Overlay Init