News | June 03, 2014

Researchers Develop Training For Brain Patterns of Empathy Using Functional MRI

June 3, 2014 — Research conducted by a group of neuroscientists has demonstrated for the first time that it is possible to train brain patterns associated with empathic feelings – more specifically, tenderness. The research showed that volunteers who received neurofeedback about their own brain activity patterns whilst being scanned inside a functional magnetic resonance imaging (fMRI) machine were able to change brain network function of areas related to tenderness and affection felt toward loved ones. These significant findings could open new possibilities for treatment of clinical situations, such as antisocial personality disorder and postpartum depression.

In Ridley Scott's film Blade Runner, based on the science fiction book Do androids dream of electric sheep? by Philip K. Dick, empathy-detection devices are employed to measure tenderness or affection emotions felt toward others (called "affiliative" emotions). Despite recent advances in neurobiology and neurotechnology, it is unknown whether brain signatures of affiliative emotions can be decoded and voluntarily modulated.

The article, entitled "Voluntary enhancement of neural signatures of affiliative emotion using fMRI neurofeedback" published in PLOS ONE, is the first study to demonstrate through a neurotechnology tool, real-time neurofeedback using fMRI, the possibility to help the induction of empathic brain states.

The authors conducted this research at the D'Or Institute for Research and Education in Rio de Janeiro, where a computational tool was designed and used to allow the participants to modulate their own brain activity related to affiliative emotions and enhance this activity. This method employed pattern-detection algorithms, called "support vector machines" to classify complex activity patterns arising simultaneously from tenths of thousands of voxels (the 3-D equivalent of pixels) inside the participants' brains.

Volunteers who received real-time information of their ongoing neural activity could change brain network function among connected areas related to tenderness and affection felt toward loved ones, while the control group who performed the same fMRI task without neurofeedback did not show such improvement.

Thus, it was demonstrated that those who received a "real" feedback were able to "train" specific brain areas related to the experience of affiliative emotions that are key for empathy. These findings can lead the way to new opportunities to investigate the use of neurofeedback in conditions associated with reduced empathy and affiliative feelings, such as antisocial personality disorders and post-partum depression.

For more information: www.idor.org/en/

Related Content

360 Photos | Magnetic Resonance Imaging (MRI) | May 17, 2019
This is a dedicated cardiac Siemens 1.5T MRI system installed at the Baylor Scott White Heart Hospital in Dallas.
New Study Evaluates Head CT Examinations and Patient Complexity
News | Neuro Imaging | May 17, 2019
Computed tomography (CT) of the head uses special X-ray equipment to help assess head injuries, dizziness and other...
Miami Cardiac and Vascular Institute Implements Philips Ingenia Ambition X 1.5T MRI
News | Magnetic Resonance Imaging (MRI) | May 17, 2019
Miami Cardiac & Vascular Institute announced the implementation of Philips’ Ingenia Ambition X 1.5T MR, the world’s...
New Phase 2B Trial Exploring Target-Specific Myocardial Ischemia Imaging Agent
News | Radiopharmaceuticals and Tracers | May 17, 2019
Biopharmaceutical company CellPoint plans to begin patient recruitment for its Phase 2b cardiovascular imaging study in...
Managing Architectural Distortion on Mammography Based on MR Enhancement
News | Mammography | May 15, 2019
High negative predictive values (NPV) in mammography architectural distortion (AD) without ultrasonographic (US)...
Icon Launches New Clinical Trial Patient Engagement Platform
Technology | Patient Engagement | May 14, 2019
Icon plc announced the release of its web-based clinical trial patient engagement platform, to provide patients with...
Netherlands Hospital to Install State-of-the-Art MRI Ablation Center
News | Magnetic Resonance Imaging (MRI) | May 13, 2019
Imricor announced the signing of a commercial agreement with the Haga Hospital in The Hague, Netherlands to outfit a...
Radiotherapy After Chemo May Improve Survival in Advanced Hodgkin's Lymphoma Patients
News | Radiation Therapy | May 10, 2019
Patients with advanced Hodgkin's lymphoma who have large tumors at the time of diagnosis may benefit from radiotherapy...
Screening MRI Detects BI-RADS 3 Breast Cancer in High-risk Patients
News | MRI Breast | May 09, 2019
When appropriate, short-interval follow-up magnetic resonance imaging (MRI) can be used to identify early-stage breast...
Clinical Trial Explores Opening Blood-Brain Barrier in Fight Against Alzheimer's

Vibhor Krishna, M.D., (right) fits David Shorr with a helmet-like device used in a new clinical trial for Alzheimer’s disease at The Ohio State University Wexner Medical Center. The device uses MRI-guided imaging to deliver focused ultrasound to specific areas of the brain to open the blood-brain barrier. Image courtesy of Ohio State University Wexner Medical Center.

News | Focused Ultrasound Therapy | May 09, 2019
May 9, 2019 — A new clinical trial at The Ohio State University Wexner Medical Center and two other sites is testing