News | Medical 3-D Printing | March 04, 2016

Planmeca ProModel Part of First Nordic Facial Tissue Transplant Procedure

Pre-operative modeling from CT images reduces total procedure time by hours

Planmeca ProModel, 3-D printing, first Nordic facial tissue transplant procedure

Image courtesy of Planmeca

March 4, 2016 — The first facial tissue transplant procedure in the history of the Nordic countries was performed earlier this year in the Hospital District of Helsinki and Uusimaa (HUS) in Finland. Planmeca contributed to the demanding and rare operation, which was the 35th of its kind in the world to date.

The facial tissue transplant surgery itself took 21 hours and was carried out by a group of 11 surgeons, as well as 20 nurses and other experts. The operation consisted of transplanting the patient’s upper and lower jaw, lips and nose, as well as segments of their skin, midfacial and tongue muscles, and the nerves of these muscles. The head the surgical team, Patrik Lassus, M.D., emphasized that the objective of the operation was to transplant facial functions, not external features.

The Planmeca ProModel service was part of the demanding procedure. It is a service for designing and creating patient-specific implants, surgical guides and skull models from cone beam computed tomography (CBCT)/CT images. 3-D technology decreases surgical time and produces significantly more precise results when compared to traditional methods. This makes operations increasingly safer for patients.

The facial tissue transplant procedure was planned pre-operatively utilizing 3-D technology. The planning consisted of modeling donor tissues and determining how they match the recipient. Surgeons Lassus and Jyrki Törnwall, M.D., designed the 3-D-printed surgical guides together with Planmeca’s CAD/CAM designer.

Planmeca’s software substantially decreased the operating time – saving hours compared to similar procedures previously carried out elsewhere in the world. Conserving time is one of the key aspects of surgery, as longer operations increase the risk of complications. In transplant cases, it is also of paramount importance to accelerate the restoration of blood flow.

“Based on literature, we know that it can take 3 to 4 hours to trim bones. In this particular operation, it took Patrik [Lassus] and myself under 10 minutes to place the transplant. This led to a drastic reduction in the duration of the surgery, while also significantly improving the accuracy of bone placement,” described Törnwall in the press conference on the operation.

Planmeca participated in planning the facial tissue transplant right from the start, led by CAD/CAM Design Manager Jani Horelli.

At Planmeca, planning the operation began around three years ago. Careful steps were taken in preparing for the upcoming procedure.

“Planmeca’s part consisted of two phases. First, we designed the surgical guides together with Dr. Lassus and Dr. Törnwall, as well as determined the kinds of segments that would be surgically removed from the recipient and transplanted from the donor. At this point, we were anticipating a scenario, which would become concrete once a donor was found,” recounted Horelli. “The second phase began immediately once we received word of a suitable donor. An X-ray image of the donor was taken at the hospital and the imaging data was utilized in 3-D designing. We also simulated the operation together with the surgeons. Following this, the components were designed and manufactured at Planmeca headquarters and transported to the hospital, where they were taken directly to the operating room.”

“Planmeca’s role has been essential to our work for years – we have been able to utilize computer simulations to create saw guides, which allow us to saw at a specific orientation and to an exact depth, as well as remove facial structures, which we know match the donor, at a precise angle,” Törnwall noted.

For more information: www.planmeca.com

Related Content

Enterprise imaging has been a hot topic in radiology and healthcare information technology (IT) circles for the last several years as medical image acquisition has moved beyond the exclusive purview of radiology.
Feature | Enterprise Imaging | October 03, 2018 | By Jeff Zagoudis
Enterprise imaging has been a hot topic in radiology and healthcare information technology (IT) circles for the last...
Brainlab and Magic Leap Partner in Digital Surgery
News | Advanced Visualization | September 28, 2018
September 28, 2018 — Brainlab announced a strategic development partnership with Florida-based Magic Leap, a develope
EOS Imaging Installs First Site in Mexico
News | Orthopedic Imaging | September 24, 2018
EOS imaging recently announced the first installation of an EOS system in Mexico, the largest Central American market,...
Artificial Intelligence Provides Faster, Clearer MRI Scans

A new artificial-intelligence-based approach to image reconstruction, called AUTOMAP, yields higher quality images from less data, reducing radiation doses for CT and PET and shortening scan times for MRI. Shown here are MR images reconstructed from the same data with conventional approaches, at left, and AUTOMAP, at right. Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital

News | Artificial Intelligence | July 17, 2018
A research team with funding from the National Institute for Biomedical Imaging and Bioengineering (NIBIB) has...
iSchemaView Brings RAPID Imaging Platform to Australia and New Zealand
News | Stroke | July 13, 2018
iSchemaView has signed Diagnostic Imaging Australia (DIA) to be the exclusive distributor for the RAPID cerebrovascular...
3-D Imaging and Computer Modeling Capture Breast Duct Development

An image of a developing mammary duct. Image courtesy of Andrew Ewald.

News | Breast Imaging | June 28, 2018
A team of biologists has joined up with civil engineers to create what is believed to be the first 3-D computer model...
3D Systems Announces On Demand Anatomical Modeling Service
Technology | Medical 3-D Printing | June 18, 2018
3D Systems announced availability of its new On Demand Anatomical Modeling Service. This new service provides a wide...
Technology | Orthopedic Imaging | June 13, 2018
EOS imaging announced it has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for its hipEOS...
Reduced hippocampal volume on MRI

This figure shows reduced hippocampal volume over the course of 6 years as seen on progressive volumetric analysis and also coronal MRI evaluations (arrows).Progressive volume loss in the mesial temporal lobe on MRI is a characteristic imaging feature of AD. This patient was a case of Alzheimer’s Dementia.

 

News | Neuro Imaging | June 12, 2018
According to a UCLA Medical Center study, a new technology shows the potential to help doctors better determine when...
FDA Issues Proposed Order to Reclassify Certain Radiological Medical Image Analyzers
News | Computer-Aided Detection Software | June 01, 2018
The U.S. Food and Drug Administration (FDA) is issuing a proposed order to reclassify certain radiological medical...