News | Magnetic Resonance Imaging (MRI) | April 24, 2017

Philips Showcases Newest MR-based Innovations at ISMRM 2017

Company will highlight work with the University of Vermont to advance neuro imaging with newest neurological clinical application, MultiBand SENSE

Philips Showcases Newest MR-based Innovations at ISMRM 2017

April 24, 2017 — Philips announced that it will feature the company’s latest magnetic resonance (MR) solutions and neurology-focused clinical applications at the International Society for Magnetic Resonance in Medicine’s (ISMRM) 25th annual meeting and exhibition, April 22-27 in Hawaii. As part of its newest suite of MR-based software applications dedicated to neurology, Philips will be showcasing MultiBand SENSE, which was developed in collaboration with several partners, including the Larner College of Medicine at the University of Vermont.

At ISMRM, Philips will demonstrate innovations designed to extend MR’s valuable role across the health continuum, touching more lives with the technology that sheds light on intricate anatomical structures and helps clinicians to make confident diagnostic decisions.

Among Philips’ newest neurology software applications is MultiBand SENSE, a clinical application that allows simultaneous acquisition of multiple slices in the brain in functional MRI (fMRI) and diffusion imaging. This capability enables accelerated neuro-functional and diffusion scans at high speed and high resolution with virtually no impact on signal-to-noise ratio (SNR), providing radiologists with the option to increase coverage or resolution without increasing scan time. MultiBand SENSE leverages Philips’ dStream digital platform on the Ingenia 3T family of MRI systems.

MultiBand SENSE has played a vital role in the university’s participation in the Adolescent Brain Cognitive Development (ABCD) study, the largest long-term study of brain development and child health in the United States. The National Institutes of Health (NIH)-funded study aims to track the biological and behavioral development of approximately 11,500 children through adolescence into young adulthood. UVM — co-led by Prof. of Psychiatry Hugh Garavan, Ph.D., and Assistant Professor of Psychiatry Alexandra Potter, Ph.D. — is one of 21 participating sites.

Richard Watts, Ph.D., associate professor of radiology and an MRI physicist at the University of Vermont, worked with Philips in development of MultiBand SENSE and has used the application in the protocols of their research to increase speed. “Specific advanced neuroimaging protocols had to be met for a site to be eligible for this large-scale study, and Philips worked with us to make that possible,” said Watts. “With Philips’ MultiBand SENSE, we are imaging six times faster, with the possibility to go up to eight, while still maintaining quality imaging results, which is key to meeting the high specifications of the study.”

At ISMRM, Philips will also be highlighting two additional MR-based clinical applications that are in development:

  • Compressed SENSE – Designed to tackle the challenges associated with bringing speed in MRI while maintaining consistent image quality; and
  • APT – APT (Amide Proton Transfer) addresses the need for definitive diagnosis in neuro-oncology.

For more information: www.usa.philips.com/healthcare

Related Content

New Module Creates a Warped MRI Scan that Matches Real-Time Ultrasound Results (Graphic: Business Wire)

New Module Creates a Warped MRI Scan that Matches Real-Time Ultrasound Results (Graphic: Business Wire)

News | Artificial Intelligence | May 07, 2021
3D aMRI not only provides a stunning look inside the "beating brain", but it can also measure this physiological motion in all directions. Here, the amplitude of brain motion is overlayed for each brain slice and orientation in 3D. Image credit: 3D aMRI method outlined in Abderezaei et al. Brain Multiphysics (2021); Terem et al. Magnetic Resonance in Medicine (2021).

3D aMRI not only provides a stunning look inside the "beating brain", but it can also measure this physiological motion in all directions. Here, the amplitude of brain motion is overlayed for each brain slice and orientation in 3D. Image credit: 3D aMRI method outlined in Abderezaei et al. Brain Multiphysics (2021); Terem et al. Magnetic Resonance in Medicine (2021).

News | Magnetic Resonance Imaging (MRI) | May 06, 2021
May 6, 2021 — Magnetic Resonance Imaging
After radiosurgery concurrent with nivolumab in 59-year-old patient with melanoma BM (patient 1; Supplemental Tables 3 and 5), F-18 FET PET at follow-up 12 weeks after treatment initiation (bottom row) shows significant decrease of metabolic activity (TBRmean, ?28%) compared with baseline (top row), although MRI changes were consistent with progression according to iRANO criteria. Reduction of metabolic activity was associated with stable clinical course over 10 mo. CE = contrast-enhanced. Image created by

After radiosurgery concurrent with nivolumab in 59-year-old patient with melanoma BM (patient 1; Supplemental Tables 3 and 5), F-18 FET PET at follow-up 12 weeks after treatment initiation (bottom row) shows significant decrease of metabolic activity (TBRmean, ?28%) compared with baseline (top row), although MRI changes were consistent with progression according to iRANO criteria. Reduction of metabolic activity was associated with stable clinical course over 10 mo. CE = contrast-enhanced. Image created by N. Galldiks et al., Research Center Juelich, Juelich, Germany.

News | PET Imaging | May 05, 2021
May 5, 2021 — For patients with brain metastases, amino acid ...
News | Artificial Intelligence | April 30, 2021
April 30, 2021 — Canon Medical is bringing the power of accessible...
The Women’s Heart Attack Research Program (HARP) study shows combining OCT and cardiac MRI can help detect the underlying cause of heart attacks in women who did not have blocked arteries.

The Women’s Heart Attack Research Program (HARP) study shows combining OCT and cardiac MRI can help detect the underlying cause of heart attacks in women who did not have blocked arteries.

News | Cardiac Imaging | April 30, 2021
April 30, 2021 — In almost 10 percent of...
Using ultra-high field magnetic resonance imaging (MRI) to map the brains of people with #Down_syndrome (#DS), #researchers from #CaseWesternReserveUniversity, #ClevelandClinic, University Hospitals and other institutions detected subtle differences in the structure and function of the #hippocampus—a region of the #brain tied to memory and learning.

Using ultra-high field magnetic resonance imaging (MRI) to map the brains of people with Down syndrome (DS), researchers from Case Western Reserve University, Cleveland Clinic, University Hospitals and other institutions detected subtle differences in the structure and function of the hippocampus—a region of the brain tied to memory and learning.

News | Magnetic Resonance Imaging (MRI) | April 29, 2021
April 29, 2021 — Using...
Overview of the scaphoid fracture detection pipeline, which consisted of a segmentation and detection convolutional neural network (CNN). A class activation map is calculated and visualized as a heatmap for fracture localization. Image courtesy of Radiological Society of North America

Overview of the scaphoid fracture detection pipeline, which consisted of a segmentation and detection convolutional neural network (CNN). A class activation map is calculated and visualized as a heatmap for fracture localization. Image courtesy of the Radiological Society of North America

News | Artificial Intelligence | April 28, 2021
April 28, 2021 — An automated system that uses...
Examples of axial FLAIR sequences from studies within dataset A. From left to right: a patient with a 'likely normal' brain; a patient presenting an intraparenchymal hemorrhage within the right temporal lobe; a patient presenting an acute infarct of the inferior division of the right middle cerebral artery; and a patient with known neurocysticercosis presenting a rounded cystic lesion in the left middle frontal gyrus. Image courtesy of Radiological Society of North America

Examples of axial FLAIR sequences from studies within dataset A. From left to right: a patient with a 'likely normal' brain; a patient presenting an intraparenchymal hemorrhage within the right temporal lobe; a patient presenting an acute infarct of the inferior division of the right middle cerebral artery; and a patient with known neurocysticercosis presenting a rounded cystic lesion in the left middle frontal gyrus. Image courtesy of Radiological Society of North America

News | Artificial Intelligence | April 22, 2021
April 22, 2021 — An artificial intellige...
IV contrast-enhanced 2-mSv 4-mm-thick transverse and coronal (b) CT images show inflamed diverticula (arrows), segmental colonic wall thickening, and adjacent pericolic fat stranding. Image courtesy of the American Roentgen Ray Society (ARRS), American Journal of Roentgenology (AJR)

IV contrast-enhanced 2-mSv 4-mm-thick transverse and coronal (b) CT images show inflamed diverticula (arrows), segmental colonic wall thickening, and adjacent pericolic fat stranding. Image courtesy of the American Roentgen Ray Society (ARRS), American Journal of Roentgenology (AJR)

News | Computed Tomography (CT) | April 09, 2021
April 9, 2021 — According to an open-acc...