News | October 16, 2007

Philips Highlights Advanced Visualization Features

Philips showcased its iSite 3.6 and 4.1 advanced visualization tools designed to speed up the reading of volumetric datasets such as multislice CT and MR cases. Its dedicated user interface and workflow features are created to facilitate PACS workflow. On-demand task guidance and a simplified volume user interface reportedly provide step-by-step help.

The iSite 3.6 and 4.1 include iSyntax3D technology that reportedly brings unparalleled rendering performance and scalability without additional server cost and complexities. iSyntax3D delivers optimized performance at minimal bandwidth to load volumetric (DICOM) datasets. Both systems include MIP/MPR/3D Volume rendering.

Company website: www.medical.philips.com

Related Content

Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy. Shown is the support staff for this system. In the center of the photo is Benjamin Movsas, M.D., chair of radiation oncology at Henry Ford Cancer Institute. Second from the right is Carrie Glide-Hurst, Ph.D., director of translational research, radiation oncology.

Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy. Shown is the support staff for this system. In the center of the photo is Benjamin Movsas, M.D., chair of radiation oncology at Henry Ford Cancer Institute. Second from the right is Carri Glide-Hurst, Ph.D., director of translational research, radiation oncology.

Feature | Henry Ford Hospital | May 21, 2019 | Dave Fornell, Editor
Henry Ford Hospital thought leaders regularly speak at the radiation oncology and radiology conferences about new res
Videos | Advanced Visualization | May 16, 2019
This is an example of how virtual reality is being used in neuro-radiology to better evaluate patients using advanced
Bioprinting research from the lab of Rice University bioengineer Jordan Miller featured a proof-of-principle — a scale-model of a lung-mimicking air sac with airways and blood vessels that never touch yet still provide oxygen to red blood cells.

Bioprinting research from the lab of Rice University bioengineer Jordan Miller featured a proof-of-principle — a scale-model of a lung-mimicking air sac with airways and blood vessels that never touch yet still provide oxygen to red blood cells. Image courtesy of Jordan Miller/Rice University.

News | Medical 3-D Printing | May 03, 2019
Bioengineers have cleared a major hurdle on the path to 3-D printing replacement organs with a breakthrough technique...
California Hospital Adds Machine-Vision Image Guided Surgery Platform to New Operating Suites
News | Advanced Visualization | April 26, 2019
Pickup Family Neurosciences Institute at Hoag in Newport Beach, Calif., announced the addition of the 7D Surgical...
Graphic courtesy of Pixabay

Graphic courtesy of Pixabay

Feature | Artificial Intelligence | April 22, 2019 | By Greg Freiherr
...
Technological Advancements Expected to Drive Virtual Reality Growth in Healthcare
News | Advanced Visualization | April 04, 2019
Increasing demand for innovative diagnostic techniques, neurological disorders and increasing disease awareness are...
Medivis Unveils AnatomyX Augmented Reality Education Platform
Technology | Advanced Visualization | April 02, 2019
Medical imaging and visualization company Medivis announced the launch of AnatomyX, its augmented reality (AR) platform...
Sponsored Content | Videos | Advanced Visualization | April 01, 2019
GE Healthcare goes beyond core equipment maintenance to help clients solve some of their most important asset and cli