News | January 13, 2015

PET Shows Benefits of Rehabilitative Training After Brain Injury

Brain imaging captures remapping of motor functions in monkeys

PET, damaged brain, remapping, Riken, AIST, motor function

January 13, 2015 — Scientists at the Riken Center for Life Science Technologies, along with researchers from the AIST Human Technology Research Institute in Japan, have identified a time-dependent interplay between two brain regions that contributes to the recovery of motor function after focal brain damage, such as a stroke. Published in the Journal of Neuroscience, the research shows that when motor functions are remapped through rehabilitative training, brain regions relatively distant from a lesion are recruited during the initial stages and functional connections with regions near the lesion are strengthened during the latter stages.

The research team investigated the special kind of neural plasticity that allows the recovery of motor function after brain damage, focusing on changes that occur during the course of rehabilitative training. This kind of training is known to promote structural and functional alterations in the brain that improve impaired motor ability, but how it does so is a question that neuroscientists are still trying to answer.

The team studied the rehabilitation process in monkeys that had suffered injury to the region of the cerebral cortex that controls hand movements. This region of the primary motor cortex is especially needed for fine movements, such as those required to grip and manipulate small objects using fingers. To facilitate recovery of motor function, the researchers taught monkeys to quickly and repeatedly grab a piece of potato through a small opening using their thumbs and index fingers — a task that requires a high degree of manual dexterity.

As expected, the team found that performing this task 30 minutes a day for several weeks after injury resulted in greatly improved motor function. To estimate changes in brain activity associated with the recovery, they imaged the regional brain activity using H215O-positron emission tomography (PET) before injury and at the early and late stages of recovery while monkeys performed the task. They found that activity in the ventral premotor cortex — a brain region somewhat distant from the injury — was higher during the early stage of recovery than before the injury. They also conducted what is known as a psychophysiological interactions (PPI) analysis and found that when monkeys performed the task in the later stages of recovery, connections between the lesion site and regions of primary motor cortex immediately surrounding it became stronger.

To verify whether the changes in these regions were in fact necessary for the recovery, they temporarily inactivated them before injury and at the recovery stages. They found that inactivation of the ventral premotor region on the same side of the brain as the lesion impaired precision grip during the early stages of recovery — even when it was limited to regions that had not been essential to hand movements before the injury. They also found that the area surrounding the injury became devoted to movements related to precision grip. During the later stage of recovery, inactivating this area only affected precision grips, but not other types of grips that had been impaired by inactivation before the lesion.

When explaining their new findings, Yumi Murata from AIST noted, "They will likely contribute to the development of new rehabilitation techniques and drugs, as well as new ways to evaluate rehabilitative training."

Hirotaka Onoe from Riken added, "New rehabilitation techniques will help reduce the burden that these types of strokes have on the patients and their families."

For more information: www.clst.riken.jp/en/

Related Content

MEDraysintell Projects Increasing Mergers and Acquisitions in Nuclear Medicine
News | Nuclear Imaging | November 07, 2018
With the recent announcement by Novartis to acquire Endocyte , interest from the conventional pharmaceutical industry...
Feature | PET Imaging | November 07, 2018 | By Greg Freiherr
Positron emission tomography (PET) is getting ready to venture outside oncology, cardiology and mainstream neurology....
Podcast | PET Imaging | November 07, 2018
PET is getting ready to venture outside oncology, cardiology and mainstream neurology.
A PET/CT head and neck cancer scan.

A PET/CT head and neck cancer scan.

Feature | Nuclear Imaging | November 05, 2018 | By Sabyasachi Ghosh
“Experimental validation implemented in real-life situations and not theoretical claims exaggerating small advantages
PET Imaging Offers New Possibilities in Chronic Liver Disease Management

Hepatic 18F-FDG, 18F-FAC, and 18F-DFA accumulation are affected in a mouse model of autoimmune hepatitis. (A) Histochemical and immunohistochemical analyses of liver sections from vehicle- and ConA-treated mice. Scale bars represent 50 microns. Transverse PET/CT images (B) and quantification (C) of vehicle- and ConA-treated mice injected with 18F-FDG, 18F-FAC, and 18FDFA. Livers are outlined in a white dotted line. Quantification represents radiotracer accumulation in the liver normalized to a background organ. Image courtesy of Salas J.R., Chen B.Y., Wong A., et al.

News | PET Imaging | October 24, 2018
While liver biopsies are powerful and reliable, they are also invasive, painful, limited and subject to complications....
CORAR Supports Medicare Diagnostic Radiopharmaceutical Payment Equity Act of 2018
News | Radiopharmaceuticals and Tracers | October 12, 2018
October 12, 2018 — The Council on Radionuclides and Radiopharmaceuticals Inc.
Huntsman Cancer Institute Installs First Preclinical nanoScan 3T PET/MRI in U.S.
News | PET-MRI | October 10, 2018
The Center for Quantitative Cancer Imaging at Huntsman Cancer Institute (HCI) at the University of Utah in Salt Lake...
Technology and Radionucleotide Development Will Fuel Mobile Gamma Camera Adoption
News | Nuclear Imaging | September 27, 2018
Advancements in healthcare technology, particularly in the surgery category, have led to an increasing adoption of...
Bruker Introduces New High-Performance Preclinical PET/CT Si78 System
Technology | PET-CT | September 26, 2018
September 26, 2018 — Bruker recently announced the introduction of the new preclinical...
Lightvision near-infrared fluorescence imaging system
News | Women's Health | September 11, 2018
Shimadzu Corp.