News | January 13, 2015

PET Shows Benefits of Rehabilitative Training After Brain Injury

Brain imaging captures remapping of motor functions in monkeys

PET, damaged brain, remapping, Riken, AIST, motor function

January 13, 2015 — Scientists at the Riken Center for Life Science Technologies, along with researchers from the AIST Human Technology Research Institute in Japan, have identified a time-dependent interplay between two brain regions that contributes to the recovery of motor function after focal brain damage, such as a stroke. Published in the Journal of Neuroscience, the research shows that when motor functions are remapped through rehabilitative training, brain regions relatively distant from a lesion are recruited during the initial stages and functional connections with regions near the lesion are strengthened during the latter stages.

The research team investigated the special kind of neural plasticity that allows the recovery of motor function after brain damage, focusing on changes that occur during the course of rehabilitative training. This kind of training is known to promote structural and functional alterations in the brain that improve impaired motor ability, but how it does so is a question that neuroscientists are still trying to answer.

The team studied the rehabilitation process in monkeys that had suffered injury to the region of the cerebral cortex that controls hand movements. This region of the primary motor cortex is especially needed for fine movements, such as those required to grip and manipulate small objects using fingers. To facilitate recovery of motor function, the researchers taught monkeys to quickly and repeatedly grab a piece of potato through a small opening using their thumbs and index fingers — a task that requires a high degree of manual dexterity.

As expected, the team found that performing this task 30 minutes a day for several weeks after injury resulted in greatly improved motor function. To estimate changes in brain activity associated with the recovery, they imaged the regional brain activity using H215O-positron emission tomography (PET) before injury and at the early and late stages of recovery while monkeys performed the task. They found that activity in the ventral premotor cortex — a brain region somewhat distant from the injury — was higher during the early stage of recovery than before the injury. They also conducted what is known as a psychophysiological interactions (PPI) analysis and found that when monkeys performed the task in the later stages of recovery, connections between the lesion site and regions of primary motor cortex immediately surrounding it became stronger.

To verify whether the changes in these regions were in fact necessary for the recovery, they temporarily inactivated them before injury and at the recovery stages. They found that inactivation of the ventral premotor region on the same side of the brain as the lesion impaired precision grip during the early stages of recovery — even when it was limited to regions that had not been essential to hand movements before the injury. They also found that the area surrounding the injury became devoted to movements related to precision grip. During the later stage of recovery, inactivating this area only affected precision grips, but not other types of grips that had been impaired by inactivation before the lesion.

When explaining their new findings, Yumi Murata from AIST noted, "They will likely contribute to the development of new rehabilitation techniques and drugs, as well as new ways to evaluate rehabilitative training."

Hirotaka Onoe from Riken added, "New rehabilitation techniques will help reduce the burden that these types of strokes have on the patients and their families."

For more information: www.clst.riken.jp/en/

Related Content

NIH Study of Brain Energy Patterns Provides New Insights into Alcohol Effects

NIH scientists present a new method for combining measures of brain activity (left) and glucose consumption (right) to study regional specialization and to better understand the effects of alcohol on the human brain. Image courtesy of Ehsan Shokri-Kojori, Ph.D., of NIAAA.

News | Neuro Imaging | March 22, 2019
March 22, 2019 — Assessing the patterns of energy use and neuronal activity simultaneously in the human brain improve
Improving Molecular Imaging Using a Deep Learning Approach
News | Nuclear Imaging | March 21, 2019
Generating comprehensive molecular images of organs and tumors in living organisms can be performed at ultra-fast speed...
PET Scans Show Biomarkers Could Spare Some Breast Cancer Patients from Chemotherapy
News | PET Imaging | March 18, 2019
A new study positron emission tomography (PET) scans has identified a biomarker that may accurately predict which...
Researchers Create New Method for Developing Cancer Imaging Isotopes

Prototype fluidic system for zirconium-89 purification. Image taken through a hot cell window at the Department of Radiology, University of Washington. Image courtesy of Matthew O’Hara, Pacific Northwest National Laboratory

News | Radiopharmaceuticals and Tracers | March 14, 2019
A team of researchers at the University of Washington announced they developed a new automated system for producing...
Siemens Healthineers Announces First U.S. Install of Biograph Vision PET/CT
News | PET-CT | March 06, 2019
Siemens Healthineers’ new Biograph Vision positron emission tomography/computed tomography (PET/CT) system has been...
ImaginAb Enrolls First Patient in Phase II PET Agent Clinical Trial
News | Radiopharmaceuticals and Tracers | January 30, 2019
ImaginAb Inc. announced the enrollment of the first patient in the Phase II clinical trial of the company’s CD8+ T Cell...
FDA Clears United Imaging Healthcare uExplorer Total-Body Scanner
Technology | PET-CT | January 23, 2019
January 23, 2019 — United Imaging Healthcare (United Imaging) announced U.S.
MIM Software Inc. Receives FDA 510(k) Clearance for Molecular Radiotherapy Dosimetry
Technology | Nuclear Imaging | January 16, 2019
MIM Software Inc. received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for molecular radiotherapy...
Videos | SPECT-CT | December 12, 2018
This is a walk around of the new Spectrum Dynamics Veriton SPECT-CT nuclear imaging system introduced at the 2018 ...