News | February 11, 2008

PET More Accurate than CT for Detecting Lung Nodules

February 12, 2008 - Positron emission tomography (PET) was far more reliable than computed tomography (CT) in detecting whether or not a nodule was malignant, according to findings in a large, multi-institutional study comparing PET and CT in their accuracy in the characterization of lung nodules.

The researchers found that when PET and CT results were interpreted as "probably" or "definitely" benign, the results were "strongly associated with a benign final diagnosis," therefore, the modalities were equally good at making this determination. PET’s superior specificity (accuracy in characterizing a nodule as benign or malignant), however, resulted in correctly classifying 58 percent of the benign nodules that had been incorrectly classified as malignant on CT. Furthermore, when PET interpreted SPNs as definitely malignant, a malignant final diagnosis was 10 times more likely than a benign.

"CT and PET have been widely used to characterize solitary pulmonary nodules (SPNs) as benign or malignant," said James W. Fletcher, professor of Radiology at Indiana University School of Medicine in Indianapolis, IN. "Almost all previous studies examining the accuracy of CT for characterizing lung nodules, however, were performed more than 15 years ago with outdated technology and methods, and previous PET studies were limited by small sample sizes."

"Detecting and characterizing SPNs is important because malignant nodules represent a potentially curable form of lung cancer. Identifying which SPNs are most likely to be malignant enables physicians to initiate the proper therapy before local or distant metastases develop," said Fletcher.

In a head-to-head study addressing the limitations of previous studies, PET and CT images on 344 patients were independently interpreted by a panel of experts in each imaging modality, and their determination of benign and malignant nodules were compared to pathologic findings or changes in SPN size over the next two years.

SPNs are commonly encountered in both primary and specialty settings, often showing up on chest X-rays obtained for some other purpose than cancer screening and are often the first manifestation of lung cancer. The question for these patients then becomes whether to undergo surgery, undergo a needle biopsy or "watch and wait" to find out if the nodule is benign or malignant but treatable.

“In patients with an untreated and undiagnosed SPN between 7 and 30 millimeters, PET provides better identification of malignant nodules that require a more aggressive treatment approach,” said Fletcher. “PET in combination with CT can also provide good identification of those nodules that are most likely to be benign, suggesting that a ‘watch and wait’ strategy can be adopted in lieu of unnecessary invasive - and expensive - procedures such as needle biopsy or surgery,” he added.

For more information: http://www.snm.org

Related Content

Artificial Intelligence Predicts Alzheimer's Years Before Diagnosis
News | Neuro Imaging | November 14, 2018
Artificial intelligence (AI) technology improves the ability of brain imaging to predict Alzheimer’s disease, according...
Researchers Awarded 2018 Canon Medical Systems USA/RSNA Research Grants
News | Radiology Imaging | November 13, 2018
The Radiological Society of North America (RSNA) Research & Education (R&E) Foundation recently announced the...
Subtle Medical Showcases Artificial Intelligence for PET, MRI Scans at RSNA 2018
News | Artificial Intelligence | November 13, 2018
At the 2018 Radiological Society of North America annual meeting (RSNA 2018), Nov. 25-30 in Chicago, Subtle Medical...
Feature | PET Imaging | November 07, 2018 | By Greg Freiherr
Positron emission tomography (PET) is getting ready to venture outside oncology, cardiology and mainstream neurology....
Podcast | PET Imaging | November 07, 2018
PET is getting ready to venture outside oncology, cardiology and mainstream neurology.
PET Imaging Offers New Possibilities in Chronic Liver Disease Management

Hepatic 18F-FDG, 18F-FAC, and 18F-DFA accumulation are affected in a mouse model of autoimmune hepatitis. (A) Histochemical and immunohistochemical analyses of liver sections from vehicle- and ConA-treated mice. Scale bars represent 50 microns. Transverse PET/CT images (B) and quantification (C) of vehicle- and ConA-treated mice injected with 18F-FDG, 18F-FAC, and 18FDFA. Livers are outlined in a white dotted line. Quantification represents radiotracer accumulation in the liver normalized to a background organ. Image courtesy of Salas J.R., Chen B.Y., Wong A., et al.

News | PET Imaging | October 24, 2018
While liver biopsies are powerful and reliable, they are also invasive, painful, limited and subject to complications....
Huntsman Cancer Institute Installs First Preclinical nanoScan 3T PET/MRI in U.S.
News | PET-MRI | October 10, 2018
The Center for Quantitative Cancer Imaging at Huntsman Cancer Institute (HCI) at the University of Utah in Salt Lake...
Technology and Radionucleotide Development Will Fuel Mobile Gamma Camera Adoption
News | Nuclear Imaging | September 27, 2018
Advancements in healthcare technology, particularly in the surgery category, have led to an increasing adoption of...
Bruker Introduces New High-Performance Preclinical PET/CT Si78 System
Technology | PET-CT | September 26, 2018
September 26, 2018 — Bruker recently announced the introduction of the new preclinical...
PET Imaging Agent Predicts Brain Tau Pathology, Alzheimer's Diagnosis
News | PET Imaging | September 05, 2018
Eli Lilly and Co. and Avid Radiopharmaceuticals Inc. announced a Phase 3 study of positron emission tomography (PET)...