News | PET Imaging | August 02, 2016

PET Imaging Could Provide Helpful Information for Genetically Linked Lung Cancer

Big data may help determine best treatment, suggests large study

PET, positron emission tomography, genetically linked lung cancer, AAPM, big data

August 2, 2016 — A cutting-edge method of extracting big data from positron emission tomography (PET) images can provide additional information to quantify lung tumors caused by a genetic mutation. This information could help guide the most effective treatment, suggest findings of a study of nearly 350 patients being presented at the 58th Annual Meeting of the American Association of Physicists in Medicine (AAPM), July 31-Aug. 4 in Washington, D.C.

Advances in genomics – the analysis of an organism’s genetic information – have shown that non-small cell lung cancer (NSCLC), the most common type of lung cancer, often is caused by mutations in specific genes. These mutations include epidermal growth factor receptor (EGFR) and Kristen rat sarcoma viral (KRAS). For example, 15 percent of patients have EGFR mutations and often benefit from tyrosine kinase inhibitor (TKI) therapies. Therefore, identification of these mutations is crucial for selecting the most effective treatment for these patients. 

PET imaging often is used to assess tumor glucose metabolism and an essential tool for lung cancer management. Studies have shown that some of the biological and genetic variations within tumors potentially can be captured in PET images.

Using big data radiomics — extracting comprehensive information from PET images — researchers evaluated the associations between radiomic features of tumors and EGFR and KRAS mutations in about 350 NSCLC lung cancer patients. The mutations were confirmed by molecular testing based on biopsies of tumor tissues, the standard of care for mutation identification. Researchers found that radiomic features describing different aspects of the tumor, such as its shape and textures, appear to be associated with EGFR mutations. Their results suggest that different metabolic imaging patterns (or imaging phenotypes) that are quantified by radiomic features may be caused by EGFR mutations.

“Our long-term goal would be to use PET or another imaging technique to develop non-invasive imaging biomarkers that complement molecular tests,” said Hugo Aerts, Ph.D., director of the Computational Imaging and Bioinformatics Laboratory at Dana Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School in Boston.

“Medical images are regularly acquired for every cancer patient that comes into our clinic for treatment, which is the case at many other cancer centers as well,” said Stephen Yip, Ph.D., an instructor at Harvard Medical School, Dana Farber Cancer Institute and Brigham and Women’s Hospital. “This early research suggests that standard-of-care PET imaging may help guide doctors in identifying patients with EGFR mutations, potentially providing valuable information for personalized lung cancer therapy.”

“More research needs to be done to further understand the complementary role of PET imaging to molecular testing,” Aerts said.

The researchers are now assessing combining PET-based radiomic features with features derived from other imaging tests, such as computed tomography (CT) or magnetic resonance imaging (MRI), to improve the accuracy of genetic mutation identification in lung and brain cancers.

For more information: www.aapm.org

Related Content

Artificial Intelligence Used in Clinical Practice to Measure Breast Density
News | Artificial Intelligence | January 15, 2019
An artificial intelligence (AI) algorithm measures breast density at the level of an experienced mammographer,...
Machine Learning Uncovers New Insights Into Human Brain Through fMRI
News | Neuro Imaging | January 11, 2019
An interdisciplinary research team led by scientists from the National University of Singapore (NUS) has successfully...
Mobile App Data Collection Shows Promise for Population Health Surveys
News | Population Health | January 10, 2019
Mobile app data collection can bring access to more potential clinical study participants, reduce clinical study...
Hypertension With Progressive Cerebral Small Vessel Disease Increases Cognitive Impairment Risk
News | Magnetic Resonance Imaging (MRI) | January 08, 2019
Patients with high blood pressure and progression of periventricular white matter hyperintensities showed signs of...
Artificial Intelligence Pinpoints Nine Different Abnormalities in Head Scans

A brain scan (left) showing an intraparenchymal hemorrhage in left frontal region and a scan (right) of a subarachnoid hemorrhage in the left parietal region. Both conditions were accurately detected by the Qure.ai tool. Image courtesy of Nature Medicine.

News | Artificial Intelligence | January 07, 2019
The rise in the use of computed tomography (CT) scans in U.S. emergency rooms has been a well-documented trend1 in...
Electronic Brachytherapy Effective in Long-Term Study of 1,000 Early-Stage Breast Cancers
News | Brachytherapy Systems, Women's Healthcare | January 07, 2019
Breast cancer recurrence rates of patients treated with intraoperative radiation therapy (IORT) using the Xoft Axxent...
Brachytherapy Alone Superior Treatment for Intermediate-Risk Prostate Cancer
News | Brachytherapy Systems | January 04, 2019
Patient-reported outcomes (PROs) indicated a significantly different clinician and patient-reported late toxicity...
Breast Cancer Patients Have Less Heart Damage With Heart Drug and Trastuzumab
News | Cardio-oncology | January 03, 2019
Breast cancer patients who take a heart drug at the same time as trastuzumab have less heart damage, according to a...
MRI Effective for Monitoring Liver Fat in Obese Patients
News | Magnetic Resonance Imaging (MRI) | December 28, 2018
Magnetic resonance imaging (MRI) provides a safe, noninvasive way to monitor liver fat levels in people who undergo...
Heart Attack, Stroke Risks Increase Leading Up to Cancer Diagnosis
News | Cardio-oncology | December 21, 2018
Older adults with cancer are more likely to have had a heart attack or stroke in the months prior to their cancer...