News | PET-CT | November 01, 2016

Optical and PET/CT Probes Detect Early Signs of Atherosclerosis

The activity-based probes image the vascular inflammation involved in plaque formation

PET/CT, atherosclerotic plaque detection, Stanford University

Application of dual-modality optical and PET/CT activity-based probe in experimental carotid inflammation model. Coronal noninvasive PET/CT scans of (A) healthy and (B) diseased mice with and without ligated carotid arteries respectively. Inset images show optical ex vivo florescence imagining of (A) healthy and (B) diseased carotid arteries.  PET/CT and optical images courtesy of Xiaowei Ma, Toshinobu Saito and Nimali Withana.

November 1, 2016 — Researchers at Stanford University have demonstrated for the first time the use of a dual optical and positron emission tomography (PET)/computed tomography (CT) activity-based probe to detect atherosclerotic plaques. The study is published in the October issue of The Journal of Nuclear Medicine.

Atherosclerosis is largely an asymptomatic disease where plaques develop over decades and symptoms do not appear until greater than 70 percent of a vessel is occluded. This results in significant risk of severe cardiovascular events such as stroke or myocardial infractions, highlighting the need for early, non-invasive diagnosis of the disease.

Matthew Bogyo, Ph.D., one of the lead authors of the study explained, “This collaborative study with Zhen Cheng, Ph.D., and Michael McConnell, M.D., provides evidence that these probes have potential benefits for non-invasive imaging of atherosclerotic plaque inflammation, potentially leading to the application of this probe in the clinic to help identify patients at high risk of developing premature atherosclerosis.”

Macrophages are cellular mediators of vascular inflammation and are involved in the formation of atherosclerotic plaques. These immune cells secrete proteases such as matrix metalloproteinases and cathepsins that contribute to disease formation and progression. In this study, activity-based probes (ABPs) targeting cysteine cathepsins were used in mouse models of atherosclerosis to non-invasively image activated macrophage populations using both optical and PET/CT methods. The probes were also used to topically label human carotid plaques, demonstrating similar specific labeling of activated macrophage populations. 

The study demonstrates that ABPs targeting the cysteine cathepsins offer a rapid, non-invasive way to image atherosclerotic disease progression and plaque vulnerability.

Bogyo noted, “What’s novel about this is the fact that these probes provide accurate detection of lesions undergoing high levels of inflammatory activity and extracellular matrix remodeling. They not only enable early disease detection, they can provide real-time monitoring of therapeutic responses and clinical drug efficacy.”

He sees broader uses for the probes in the future. “The probes show efficacy in a variety of imaging modalities, including fluorescence, PET/CT, and topical application of the probe to fresh frozen murine and human tissue sections. These tools further demonstrate that the future of molecular imaging and nuclear medicine will be focused on agents that allow specific targeting of disease-associated proteins or markers that allow monitoring of disease onset, progress and response to therapeutic agents,” he said.

For more information: www.jnm.snmjournals.org

Related Content

News | Enterprise Imaging | May 25, 2017
At the 2017 annual meeting of the Society for Imaging Informatics in Medicine (SIIM), June 1-3 in Pittsburgh, Konica...
Lantheus and GE Healthcare Sign Agreement for Worldwide Development, Commercialization of Flurpiridaz F-18
News | Radiopharmaceuticals and Tracers | May 22, 2017
May 22, 2017 — Lantheus Holdings Inc., parent company of Lantheus Medical Imaging Inc., and GE Healthcare announced t
FALCON Trial of Fluciclovine PET/CT Imaging Stops Recruitment after Successful Interim Analysis
News | Radiopharmaceuticals and Tracers | May 15, 2017
Blue Earth Diagnostics announced that the Trial Steering Committee recommended further recruitment be stopped in the...
Study Reveals Low Adoption of IAEA Recommendations for Reduced Nuclear Cardiology Radiation Exposure
News | Radiation Dose Management | May 12, 2017
A study in 65 countries has revealed low adoption of International Atomic Energy Agency (IAEA) recommendations to...
Large Nuclear Cardiology Laboratory Slashes Radiation Dose 60 Percent in Eight Years
News | Radiation Dose Management | May 11, 2017
A large nuclear cardiology laboratory in Missouri has slashed its average radiation dose by 60 percent in eight years,...
low-dose lung CT scan

An example of a low-dose CT scan of the lungs, showing lung cancer. Image courtesy of Toshiba.

Feature | Lung Cancer | May 05, 2017 | Alison Grimes
The term mesothelioma was coined in 1909, just a few years after the introduction of medical X-ray imaging.
PET/CT

The Philips Ingenuity TF PET/CT system leverages multiple technologies.

Feature | Radiation Oncology | May 05, 2017 | By Lola Koktysh
The continuum of personalized care, covering individualized prevention and therapy, translates into multiple changes to...
Sponsored Content | Videos | Business | May 03, 2017
Kim A.
PET/CT Helps Predict Therapy Effectiveness in Pediatric Brain Tumors

FIGURE: MRI AND PET-MRI FUSION IMAGES OF PATIENTS WITH DIPG. Top row: Zr-89-bevacizumab PET (144 hrs p.i.) fused with T1-Gd weighted MRI per patient; middle row: T1-Gd weighted MRI; lower row: T2-weighted/FLAIR MR-images. Five tumors show variable uptake of Zr-89-bevacizumab (white arrows), with both PET negative and positive areas within each tumor. Two primary tumors are completely PET negative (Fig. 1C and 1E), while the T2 weighted images show tumor infiltration in the whole pons of both patients. In the middle row, the red arrows represent the areas of contrast enhancement within the tumor. In four out of five primary tumors, the PET-positive area corresponds with the contrast-enhancing area on MRI of the tumors (Fig. 1A, 1B, 1F and 1G). In Fig. 1C, the tumor shows an MRI contrast-enhancing area, while there is no Zr-89-bevacizumab uptake. Fig. 1D shows a PET positive tumor, while no Gd-enhancement is observed on MRI. Credit: Sophie Veldhuijzen van Zanten and Marc Jansen, VU University Medical Center, Amsterdam, The Netherlands.

News | PET-CT | May 02, 2017
In a first-ever molecular drug-imaging study in children, researchers in The Netherlands used whole-body positron...
Australian Team Finds New Method for Producing PET Radiotracers in Higher Radiochemical Yields
News | Radiopharmaceuticals and Tracers | April 28, 2017
April 28, 2017 — Researchers at the Australian Nuclear Science and Technology Organisation (ANSTO) have led the devel
Overlay Init