News | PET-CT | November 01, 2016

Optical and PET/CT Probes Detect Early Signs of Atherosclerosis

The activity-based probes image the vascular inflammation involved in plaque formation

PET/CT, atherosclerotic plaque detection, Stanford University

Application of dual-modality optical and PET/CT activity-based probe in experimental carotid inflammation model. Coronal noninvasive PET/CT scans of (A) healthy and (B) diseased mice with and without ligated carotid arteries respectively. Inset images show optical ex vivo florescence imagining of (A) healthy and (B) diseased carotid arteries.  PET/CT and optical images courtesy of Xiaowei Ma, Toshinobu Saito and Nimali Withana.

November 1, 2016 — Researchers at Stanford University have demonstrated for the first time the use of a dual optical and positron emission tomography (PET)/computed tomography (CT) activity-based probe to detect atherosclerotic plaques. The study is published in the October issue of The Journal of Nuclear Medicine.

Atherosclerosis is largely an asymptomatic disease where plaques develop over decades and symptoms do not appear until greater than 70 percent of a vessel is occluded. This results in significant risk of severe cardiovascular events such as stroke or myocardial infractions, highlighting the need for early, non-invasive diagnosis of the disease.

Matthew Bogyo, Ph.D., one of the lead authors of the study explained, “This collaborative study with Zhen Cheng, Ph.D., and Michael McConnell, M.D., provides evidence that these probes have potential benefits for non-invasive imaging of atherosclerotic plaque inflammation, potentially leading to the application of this probe in the clinic to help identify patients at high risk of developing premature atherosclerosis.”

Macrophages are cellular mediators of vascular inflammation and are involved in the formation of atherosclerotic plaques. These immune cells secrete proteases such as matrix metalloproteinases and cathepsins that contribute to disease formation and progression. In this study, activity-based probes (ABPs) targeting cysteine cathepsins were used in mouse models of atherosclerosis to non-invasively image activated macrophage populations using both optical and PET/CT methods. The probes were also used to topically label human carotid plaques, demonstrating similar specific labeling of activated macrophage populations. 

The study demonstrates that ABPs targeting the cysteine cathepsins offer a rapid, non-invasive way to image atherosclerotic disease progression and plaque vulnerability.

Bogyo noted, “What’s novel about this is the fact that these probes provide accurate detection of lesions undergoing high levels of inflammatory activity and extracellular matrix remodeling. They not only enable early disease detection, they can provide real-time monitoring of therapeutic responses and clinical drug efficacy.”

He sees broader uses for the probes in the future. “The probes show efficacy in a variety of imaging modalities, including fluorescence, PET/CT, and topical application of the probe to fresh frozen murine and human tissue sections. These tools further demonstrate that the future of molecular imaging and nuclear medicine will be focused on agents that allow specific targeting of disease-associated proteins or markers that allow monitoring of disease onset, progress and response to therapeutic agents,” he said.

For more information: www.jnm.snmjournals.org

Related Content

As part of an international collaboration, researchers from Aarhus University and University of Leicester have succeeded in developing a dynamic 3-D CT scanning method that shows what happens inside the body during simulated heart massage

A look inside cardiopulmonary resuscitation: A 4-D computed tomography model of simulated closed chest compression. A proof of concept. Courtesy of Kasper Hansen/Jonathan Bjerg Moeller/Aarhus University

News | Cardiac Imaging | August 07, 2020
August 7, 2020 — Rapid first aid during...
Ghost imaging approach could enable detailed movies of the heart with low-dose X-rays

Researchers developed a high-resolution X-ray imaging technique based on ghost imaging that can capture the motion of rapidly moving objects. They used it to create a movie of a blade rotating at 100,000 frames per second. Image courtesy of Sharon Shwartz, Bar-Ilan University

News | X-Ray | August 06, 2020
August 6, 2020 — Researche...
It covers every major modality, including breast imaging/mammography, fixed and portable C-arms (cath, IR/angio, hybrid, OR), CT, MRI, nuclear medicine, radiographic fluoroscopy, ultrasound and X-ray
News | Radiology Imaging | July 29, 2020
July 29, 2020 — IMV Medical Information, part of Scien...
Left, a 3-D rendering of a heart from a cardiac CT exam. Right, a lung-CT exam showing the heart and ground glass lesions in the lungs of a COVID-19 patient. CT has become a front-line imaging modality in the COVID era because it offers both cardiac and lung information to help determine a patients disposition with chest pain, COVID-19 and COVID-caused myocarditis and pulmonary embolism. #COVID19 #CCTfirst #YesCCT

Left, a 3-D rendering of a heart from a cardiac CT exam. Right, a lung-CT exam showing the heart and ground glass lesions in the lungs of a COVID-19 patient. CT has become a front-line imaging modality in the COVID era because it offers both cardiac and lung information to help determine a patients disposition with chest pain, COVID-19 and COVID-caused myocarditis and pulmonary embolism.

Feature | Computed Tomography (CT) | July 28, 2020
July 28, 2020 — The use of cardiova...
A cardiac CT of a patient with pacemaker leads, which can be challenging to get good images due to metal artifact. This image was rendered from using Canon's AiCE AI-assisted interactive reconstruction with Global Illumination 3-D rendering from a scan on an Aquilion One Genesis SP system.

A cardiac CT of a patient with pacemaker leads, which can be challenging to get good images due to metal artifact. This image was rendered from using Canon's AiCE AI-assisted interactive reconstruction with Global Illumination 3-D rendering from a scan on an Aquilion One Genesis SP system.

Feature | Computed Tomography (CT) | July 27, 2020
There has been tremendous growth in the field of cardiovascular...
In I-131 cancer therapy, decay events damage sensitive DNA within a tumor cell nucleus, causing catastrophic single and double strand breaks. Clinical use of antibody-delivered Auger emitters could open a window for the targeted destruction of extracellular COVID-19 virions, decreasing the viral load during active infection and potentially easing the disease burden for a patient. View all figures from this study.  http://jnm.snmjournals.org/content/early/2020/07/16/jnumed.120.249748.full.pdf+html

In I-131 cancer therapy, decay events damage sensitive DNA within a tumor cell nucleus, causing catastrophic single and double strand breaks. Clinical use of antibody-delivered Auger emitters could open a window for the targeted destruction of extracellular COVID-19 virions, decreasing the viral load during active infection and potentially easing the disease burden for a patient. View all figures from this study.

 

News | Coronavirus (COVID-19) | July 22, 2020 | Dave Fornell, Editor
July 22, 2020 — One of the first studies has been published that looks at the use of...
The new Aquilion One Genesis SP cardiac CT system uses artificial intelligence to help reconstruct low dose cardiac CT images. #SCCT2020

The new Aquilion One Genesis SP cardiac CT system uses artificial intelligence to help reconstruct low dose cardiac CT images.

News | Computed Tomography (CT) | July 20, 2020
July 20, 2020 – To meet the growing cardiovascular imaging needs of healthcare systems, Canon Medical Systems USA is
Tau (blue) and amyloid (orange) distribution patterns for super-agers, normal-agers and MCI patients, when compared to a group of younger, healthy, cognitively normal, amyloid-negative individuals. Brain projections are depicted at an uncorrected significance level of p < .0001. Color bars represent the respective t-statistic. Image courtesy of Merle C. Hoenig, Institute for Neuroscience and Medicine II - Molecular Organization of the Brain, Research Center Juelich, Juelich, Germany, and Department of Nucle

Tau (blue) and amyloid (orange) distribution patterns for super-agers, normal-agers and MCI patients, when compared to a group of younger, healthy, cognitively normal, amyloid-negative individuals. Brain projections are depicted at an uncorrected significance level of p < .0001. Color bars represent the respective t-statistic. Image courtesy of Merle C. Hoenig, Institute for Neuroscience and Medicine II - Molecular Organization of the Brain, Research Center Juelich, Juelich, Germany, and Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany.

News | PET Imaging | July 16, 2020
July 16, 2020 — Super-agers, or individuals whose cognitive skills are above the norm even at an advanced age, have b
PSMA PET/CT accurately detects recurrent prostate cancer in 67-year-old man. 18F-DCFPyL-PSMA PET/CT shows extensive, intensely PSMA-avid local recurrence in prostate (bottom row; solid arrow) in keeping with the known tumor recurrence in the prostate. Right: PET shows extensive, intensely PSMA-avid local recurrence in prostate (top row; solid arrow) and a solitary bone metastasis in left rib 2 (bottom row; dotted arrow). Image courtesy of Ur Metser, et al.

PSMA PET/CT accurately detects recurrent prostate cancer in 67-year-old man. 18F-DCFPyL-PSMA PET/CT shows extensive, intensely PSMA-avid local recurrence in prostate (bottom row; solid arrow) in keeping with the known tumor recurrence in the prostate. Right: PET shows extensive, intensely PSMA-avid local recurrence in prostate (top row; solid arrow) and a solitary bone metastasis in left rib 2 (bottom row; dotted arrow). Image courtesy of Ur Metser, et al.

News | PET-CT | July 16, 2020
July 16, 2020 — New research confirms the high impact of...