News | November 18, 2014

Novel Molecular Imaging Drug Offers Better Detection of Prostate Cancer

Breakthrough study shows potential of new drug used with planar and SPECT imaging

A novel study demonstrates the potential of a novel molecular imaging drug to detect and visualize early prostate cancer in soft tissue, lymph nodes and bone. The research, published in the November issue of The Journal of Nuclear Medicine, compares the biodistribution and tumor uptake kinetics of two Tc-99m labeled ligands, MIP-1404 and MIP-1405, used with SPECT and planar imaging.  

Prostate cancer is the most commonly diagnosed non-skin cancer in the United States, and it is second only to lung cancer as the leading cause of cancer deaths in American men. An estimated 233,000 new cases of prostate cancer will be diagnosed in the United States in 2014, and an estimated 29,000 will die of the disease. More than 2 million men are currently living with prostate cancer in the United States. 

Under an exploratory investigational new drug, using a cross-over design, researchers compared the pharmacokinetics, biodistribution, and tumor uptake of Tc-99m MIP-1404 and Tc-99m MIP-1405 in 6 healthy men and 6 men with radiographic evidence of metastatic prostate cancer. Whole body images were obtained at 10 minutes and at 1, 2, 4 and 24 hours. SPECT was performed between 3 and 4 hours after injection. Prior to the study, no single target-specific Tc-99m radiopharmaceutical could image prostate cancer in soft tissue, lymph nodes and bone (bone metastasis) based on planar and SPECT. There was no uptake in degenerative bone disease, which often confounds bone scans.

“This research represents an innovative prostate cancer planar and SPECT imaging technology—addressing unmet clinical need for sensitive and selective imaging of loco-regional and distant metastatic prostate cancer,” stated Shankar Vallabhajosula, Ph.D., lead author of the study “99mTc-Labeled Small Molecule Inhibitors of Prostate Specific Membrane Antigen: Pharmacokinetics and Biodistribution Studies in Healthy Subjects and Patients with Metastatic Prostate Cancer. “With respect to imaging, the lack of focal uptake in the normal prostate of healthy volunteers with both compounds further demonstrated that PSMA is a viable targeting mechanism for detection and visualization of prostate cancer and suggests that this imaging approach is highly sensitive and disease specific.”

There was good correlation with bone scans in most subjects, although in general, more lesions were visualized with MIP-1404 and MIP-1405 than with bone scans, suggesting this agent may be more sensitive to detecting skeletal or marrow invasion earlier than bone scans. “We also demonstrated that Tc-99m MIP-1404 has favourable pharmacokinetics and biodistribution, which represents a breakthrough in imaging of prostate cancer for the following reasons: Tc-99m MIP-1404 can image prostate cancer in lymph nodes, soft tissue and bone,” noted Vallabhajosula. 

A multi-center phase II study with Tc-99m MIP-1404 in 100 patients was recently completed, and the data were presented at 2014 SNMMI Annual Meeting in St. Louis, Mo. Progenics Pharmaceuticals has plans to conduct a phase III trial soon.

Authors of the article “99mTc-Labeled Small Molecule Inhibitors of Prostate Specific Membrane Antigen: Pharmacokinetics and Biodistribution Studies in Healthy Subjects and Patients with Metastatic Prostate Cancer” include Shankar Vallabhajosula, Anastasia Nikolopoulou, Joseph Osborne, Scott T. Tagawa, Irina Lipai, Lilja Solnes, and Stanley Goldsmith, New York Presbyterian Hospital and Weill Cornell Medical College, New York, N.Y.; John Babich, Kevin P. Maresca, Thomas Armor, John Joyal, and Robert Crummet, Molecular Insight Pharmaceuticals, Inc., Cambridge, Mass.; and James B. Stubbs, Radiation Dosimetry Systems, Inc., Alpharetta, Ga.

For more information: http://jnm.snmjournals.org

Related Content

ASNC and SNMMI Release Joint Document on Diagnosis, Treatment of Cardiac Sarcoidosis
News | Cardiac Imaging | August 18, 2017
August 18, 2017 — The American Society of Nuclear Cardiology (ASNC) has released a joint expert consensus document wi
Houston Methodist Hospital Enters Multi-Year Technology and Research Agreement With Siemens Healthineers
News | Imaging | August 17, 2017
Houston Methodist Hospital and Siemens Healthineers have entered into a multi-year agreement to bring cutting-edge...
Study Demonstrates First Human Application of Novel PET Tracer for Prostate Cancer

Transaxial 11Csarcosine hybrid PET/CT showed a (triangulated) adenocarcinoma in the transition zone of the anterior right prostate gland on PET (A), CT (B), and a separately obtained T2?weighted MR sequence (C) with resulting PET/MRI registration (D). Image courtesy of M. Piert et al., University of Michigan, Ann Arbor, Mich.

News | Radiopharmaceuticals and Tracers | August 16, 2017
In the featured translational article in the August issue of The Journal of Nuclear Medicine, researchers at the...
Synergy Radiology Associates Employs UroNav Fusion Biopsy System for Better Prostate Cancer Diagnosis
News | Biopsy Systems | July 17, 2017
Radiologists from Synergy Radiology Associates (SRA) in Houston are using the power of 3-D medical imaging and...
PET/CT Tracer Identifies Vulnerable Lesions in Non-Small Cell Lung Cancer Patients

Example of a patient with an upper left lung NSCLC: A: FDG; B: FDG PET/CT; C: Planning radiotherapy based on FDG (66Gy) with BTVm (GTV), CTV and PTV; D: PET FMISO E: FMISO PET/CT; F: boost based on the FMISO PET (76Gy) with BTVh (biological hypoxic target volume) and PTV boost. Credit: QuantIF – LITIS EA 4108 – FR CNRS 3638, Henri Becquerel Cancer Center, Rouen, France

News | PET-CT | July 14, 2017
July 14, 2017 — Fluorine-18 (18F)-fluoromisonidazole (FMISO) is a positron emission tomography (PET)...
Novel PET Tracer Detects Small Blood Clots

PET images (MIP 0-60 min) of three Cynomolgus monkeys. Strong signals are detected at the sites where inserted catheters had roughened surfaces. Almost no other background signal is visible. Only accumulation in the gallbladder becomes visible at the bottom of the image. Credit: Piramal Imaging GmbH, Berlin Germany.

News | PET Imaging | July 07, 2017
July 7, 2017 — Blood clots in veins a
Sponsored Content | Videos | Clinical Decision Support | June 29, 2017
Rami Doukky, M.D., system chair, Division of Cardiology, professor of medicine, Cook County Health and Hospitals Syst
Augmenix Announces First New Zealand Prostate Cancer Patient Treated with SpaceOAR Hydrogel
News | Patient Positioning Radiation Therapy | June 28, 2017
Augmenix Inc. announced that the first patient in New Zealand has been treated with SpaceOAR hydrogel at the Kathleen...
Overlay Init