News | August 20, 2014

NorthStar Medical Radioisotopes Signs Letter of Intent With GE Healthcare

Relationship will help create a reliable domestic source of vital radioisotope produced without the use of highly enriched uranium

August 20, 2014 — NorthStar Medical Radioisotopes LLC signed a non-exclusive letter of intent with GE Healthcare, a division of General Electric Co., marking further progress toward establishing the first existing commercially viable domestic source of the radioisotope 99molybdenum (99Mo).

99Mo is the parent isotope of 99mtechnetium (99mTc), the most widely used radioisotope in medical diagnostic imaging. Under the purchase agreement, NorthStar will supply GE Healthcare with 99Mo to produce 99mTc for compounding and distribution once its non-uranium-based 99Mo production technology and proprietary RadioGenix isotope separation system have been approved by the U.S. Food and Drug Administration (FDA) and are commercially available.

NorthStar recently signed a similar agreement with the radiopharmacy chain Triad Isotopes Inc.

NorthStar, based in Madison, Wis., is developing a domestic source of 99Mo to help alleviate chronic shortages. The 99Mo will be produced without the use of weapons-useable highly enriched uranium (HEU), helping meet goals set by the U.S. Department of Energy’s (DOE) Global Threat Reduction Initiative (GTRI). The initiative was established to reduce and protect vulnerable nuclear and radiological material located at civilian sites worldwide and to minimize the use of HEU in civilian applications.

99mTc is used in more than 13 million nuclear medicine procedures annually in the United States alone. Key applications include myocardial perfusion imaging (testing how well blood flows through the heart), sentinel node mapping (detecting whether breast cancer cells have spread to the sentinel lymph nodes), hepatobiliary imaging (evaluating the liver, gallbladder and ducts that are part of the biliary system) and inflammation and infection imaging.

Currently, nearly all 99Mo is produced using weapons-useable HEU at aging facilities located outside of the United States, leading to product shortages and creating safety and national security concerns. DOE, through GTRI, works with commercial entities to accelerate the establishment of domestic sources of 99Mo produced without HEU.

NorthStar has two methods of producing non-HEU 99Mo, both of which generate only a benign waste stream. The non-HEU 99Mo produced by NorthStar is for use in the company’s intelligent isotope separation system, the RadioGenix, the first true technological breakthrough in 99Mo/99mTc systems in nearly 45 years.

NorthStar President and Chief Executive Officer George P. Messina said, “Together, NorthStar and GE Healthcare will help ensure that health care professionals have reliable access to the 99mTc isotope they need to give their patients accurate diagnoses and conduct important research. And because the 99Mo parent radioisotope will be produced without the use of highly enriched uranium, we will be helping the United States achieve vital national security and safety goals.”

GE Healthcare Global Product Leader Julie Woodland said, “Continuity of supply of 99Mo to meet the growing demand for diagnostic procedures is a key focus for GE Healthcare. The company is actively working with new alternative 99mTc sources to help ensure that access to the radioisotope is readily available to aid in the diagnosis of patients both today and in the future.”

Read the 2017 article "FDA Clears Path for First Domestic Supply of Tc-99m Isotope." 

For more information: gehealthcare.com, www.northstarnm.com

Related Content

Strategies to help guide nuclear radiology teams at various healthcare systems in 2021 and beyond
News | Nuclear Imaging | September 15, 2021 | By Staff of the American Society of Nuclear Cardiology (ASNC)
Gallium-68 from GalliaPharm is used for the preparation of diagnostic imaging drugs in Positron Emission Tomography (PET).
News | PET Imaging | September 03, 2021
September 3, 2021 — Eckert & Ziegler Radiopharma GmbH has successfully submitted an amendment to their Drug Maste
ASTRO’s 63rd Annual Meeting is scheduled to take place as an in-person meeting October 24-27 in Chicago, but be sure to bring along your masks

Getty Images

News | ASTRO | August 11, 2021
August 11, 2021 — ASTRO announced that it is facilitating measu
Cerium-134 can be targeted to provide an imaging analogue for two different therapy isotopes, actinium-225 and thorium-227. This helps scientists understand these therapy isotopes and develop new treatments. Image courtesy of Donald Montoya, Los Alamos National Laboratory

Cerium-134 can be targeted to provide an imaging analogue for two different therapy isotopes, actinium-225 and thorium-227. This helps scientists understand these therapy isotopes and develop new treatments. Image courtesy of Donald Montoya, Los Alamos National Laboratory

News | PET Imaging | August 06, 2021
August 6, 2021 — A multidisciplinary tea...
PET, PET imaging, PET-CT, FDG PET, PET cancer assessment, pet scanner, nuclear imaging, molecular imaging

A PET-CT head and neck cancer scan showing various image reconstructions. The top left image is the separate CT scan showing the anatomy. The top right scan shows the fused PET and CT scans with false color added to help interpret the image. The bottom left scan is an initial FDG PET image showing tracer hot spots in the neck and a lymph node in the right jaw due to cancer. The right bottom image is a delayed enhancement scan showing tracer uptake over time, with normal hot spots in the bladder, kidneys, testicles and brain, which normally have higher metabolic activity. The low-grade gray shading of the anatomy is due to the normal cellular metabolism uptake of the FDG throughout the body. 

News | PET-CT | August 04, 2021
August 4, 2021 — PET/CT systems are exp
The Council on Radionuclides and Radiopharmaceuticals, Inc. (CORAR), along with physicians and patient organizations, supports the introduction of H.R. 4479, the “Facilitating Innovative Nuclear Diagnostics (FIND) Act of 2021” by Congressmen Scott Peters (D-CA), Bobby Rush (D-IL), Neal Dunn (R-FL) and Greg Murphy (R-NC).

Getty Images

News | Nuclear Imaging | August 04, 2021
August 4, 2021 — The Council on Radionuclides and Radiopharmaceuticals, Inc.

Image courtesy of Vital Images

News | Molecular Imaging | August 02, 2021
August 2, 2021 — The global molecular imaging marke