News | Radiation Dose Management | February 04, 2016

No Proof Medical Imaging Radiation Causes Cancer

Radiation fears based on unproven theoretical model, study finds

medical imaging, low-dose radiation, cancer, LNT model study

February 4, 2016 — The widespread belief that radiation from X rays, CT scans and other medical imaging can cause cancer is based on an unproven, decades-old theoretical model, according to a study published in the American Journal of Clinical Oncology.

The model, known as linear no-threshold (LNT), is used to estimate cancer risks from low-dose radiation such as medical imaging. But risk estimates based on this model “are only theoretical and, as yet, have never been conclusively demonstrated by empirical evidence,” corresponding author James Welsh, M.D., and colleagues write. Use of the LNT model drives unfounded fears and “excessive expenditures on putative but unneeded and wasteful safety measures.”

Welsh is a Loyola University Medical Center radiation oncologist and a professor in the Department of Radiation Oncology of Loyola University Chicago Stritch School of Medicine.

The LNT model dissuades many physicians from using appropriate imaging techniques and “discourages many in the public from getting proper and needed imaging, all in the name of avoiding any radiation exposure,” Welsh and colleagues write.

The authors reexamined the original studies, dating back more than 70 years, which led to adoption of the LNT model. This reappraisal found that the data reported in those studies do not actually support the LNT model.

In the LNT model, the well-established cancer-causing effects of high doses of radiation are extended downward in a straight line to very low doses. The LNT model assumes there is no safe dose of radiation, no matter how small. However, the human body has evolved the ability to repair damage from low-dose radiation that naturally occurs in the environment.

The LNT model dates to studies, conducted in the 1940s, of fruit flies exposed to various doses of radiation. The scientists who conducted those studies concluded there is no safe level of radiation, thus giving rise to the LNT model that is used to this day. But their conclusion was unwarranted because their experiments had not been done at truly low doses. A study exposing fruit flies to low-dose radiation wasn’t conducted until 2009, and this study did not support the LNT model.

Studies of atomic bomb survivors and other epidemiological studies of human populations have never conclusively demonstrated that low-dose radiation exposure can cause cancer.

Any claim that low-dose radiation from medical imaging procedures is known to cause cancer “should be vigorously challenged, because it serves to alarm and perhaps harm, rather than educate,” Welsh and colleagues write.

The authors conclude the LNT model “should finally and decisively be abandoned.”

The study is titled “The birth of the illegitimate linear no-threshold model – an invalid paradigm for estimating risk following low-dose radiation exposure.”

In addition to Welsh, co-authors are: Jeffry Siegel, Ph.D., president and CEO of Nuclear Physics Enterprises (first author); Charles Pennington of NAC International and Bill Sacks, M.D., Ph.D., emeritus medical officer in the U.S. Food and Drug Administration (FDA) Center for Devices and Radiological Health.

 

Read the article, “Public Perception of Long-term Health Effects of Atomic Bomb Radiation Worse than Reality.”

 

Read the article “CT Cancer Risk Poorly Understood by Many Healthcare Providers.”

 

For more information: www.journals.lww.com/amjclinicaloncology

Related Content

Machine Learning IDs Markers to Help Predict Alzheimer's

Neurologists use structural and diffusion magnetic resonance imaging (MRI) to identify changes in brain tissue (both gray and white matter) that are characteristic of Alzheimer's disease and other forms of dementia. The MRI images are analyzed using morphometry and tractography techniques, which detect changes in the shape and dimensions of the brain and in the tissue microstructure, respectively. In this example, the images show the normal brain of an elderly patient. Image courtesy of Jiook Cha.

News | Neuro Imaging | September 20, 2018
New research has shown a combination of two different modes of magnetic resonance imaging (MRI), computer-based...
Ingenia Ambition X 1.5T MR. This innovation is the latest advance in the Ingenia MRI portfolio, which comprises fully-digital MRI systems, healthcare informatics and a range of maintenance and life cycle services for integrated solutions that empower a faster, smarter, and simpler path to enabling a confident diagnosis
News | Magnetic Resonance Imaging (MRI) | September 14, 2018
Philips, a global leader in health technology, launched the Ingenia Ambition X 1.5T MR.
Sponsored Content | Whitepapers | Radiation Dose Management | September 10, 2018
It’s crucial for medical professionals to understand the radiation risk/ benefit balance of diagnostic imaging system
Videos | Radiation Therapy | September 07, 2018
A discussion with Ehsan Samei, Ph.D., DABR, FAAPM, FSPIE, director of the Duke University Clinical Imaging Physics Gr
The CT scanner might not come with protocols that are adequate for each hospital situation, so at Phoenix Children’s Hospital they designed their own protocols, said Dianna Bardo, M.D., director of body MR and co-director of the 3D Innovation Lab at Phoenix Children’s.

The CT scanner might not come with protocols that are adequate for each hospital situation, so at Phoenix Children’s Hospital they designed their own protocols, said Dianna Bardo, M.D., director of body MR and co-director of the 3D Innovation Lab at Phoenix Children’s.

Sponsored Content | Case Study | Radiation Dose Management | September 07, 2018
Radiation dose management is central to child patient safety. Medical imaging plays an increasing role in the accurate...

Image courtesy of Medic Vision

Feature | Radiation Dose Management | September 06, 2018 | By Mukul Mehra, M.D.
While working with a patient with Crohn’s disease in my gastroenterology practice, I nearly ordered a computed...
PET Imaging Agent Predicts Brain Tau Pathology, Alzheimer's Diagnosis
News | PET Imaging | September 05, 2018
Eli Lilly and Co. and Avid Radiopharmaceuticals Inc. announced a Phase 3 study of positron emission tomography (PET)...
Check-Cap Announces Interim Results of European Study of C-Scan System Version 3
News | Colonoscopy Systems | September 04, 2018
Check-Cap Ltd. announced the interim results for its post-CE approval study of the C-Scan system Version 3, an...
Brain Iron Levels May Predict Multiple Sclerosis Disabilities
News | Neuro Imaging | August 31, 2018
A new, highly accurate magnetic resonance imaging (MRI) technique can monitor iron levels in the brains of multiple...
Study Finds Multiple Sclerosis Drug Slows Brain Shrinkage

An NIH-funded clinical trial suggested that the anti-inflammatory drug ibudilast may slow brain shrinkage caused by progressive MS. Image courtesy of Robert J. Fox, M.D., Cleveland Clinic.

News | Neuro Imaging | August 30, 2018
August 30, 2018 — Results from a clinical...