News | Magnetic Resonance Imaging (MRI) | September 24, 2015

New Standardized Brain Tumor MRI Recommendations Announced

Brain Tumor Imaging Protocol will reduce variability and increase accuracy in determining progression and response of investigational therapies

JBTDDC, MRI, brain tumor clinical trials, Brain Tumor Imaging Protocol, BTIP, recommendations

September 24, 2015 — The Jumpstarting Brain Tumor Drug Development Coalition (JBTDDC) announced a new consensus protocol for magnetic resonance imaging (MRI) in brain tumor clinical trials to help better assess if a new treatment is effective. The coalition’s Brain Tumor Imaging Standardization Steering Committee published its recommended new standards for acquisition of imaging data in multicenter clinical trials, called the Brain Tumor Imaging Protocol (BTIP), in the advanced access online edition of the journal Neuro-Oncology.

The development and adoption of a standardized MRI protocol in brain tumor clinical trials will help validate and build confidence in the use of quantitative imaging surrogates as endpoints for drugs seeking U.S. Food and Drug Administration (FDA) approval, including but not limited to the ‘Accelerated Approval’ pathway. In addition, a standardized protocol will incentivize brain tumor drug development by providing an accepted way to capture imaging information essential to the evaluation of future treatments.

“Malignant brain tumors, particularly glioblastomas, are some of the most complex and treatment-resistant cancers,” said Mark Gilbert, M.D., chair of the Brain Tumor Imaging Standardization Steering Committee and chief of the Neuro-Oncology Branch of the National Cancer Institute. “Glioblastoma patients have a median survival of only 14-16 months, and fewer than 10 percent survive beyond five years of their diagnosis. With limited treatment options available, there is a critical need to quickly identify new, effective therapies for this patient population.”

As is the case across all oncology clinical trials, Overall Survival (OS) is the “gold standard” measurement of investigational brain tumor therapies’ effectiveness. However, OS trials are lengthy and expensive. Therefore, the field of neuro-oncology has a long-standing interest in using alternative endpoints that use imaging to measure tumor progression and response to determine the relative value of an investigational treatment.

Traditionally, response and progression are measured in neuro-oncology using MR imaging. However, there have been issues with variability in the interpretation of images and tumor measurements between observers and between treatment centers. The lack of standards in MR imaging acquisition protocols and differences in MR scanners (i.e. field strength, gradient system, manufacturer sequences) has limited the ability to combine imaging data across sites in a multicenter clinical trial study. 

“It is well known that even minor differences in hardware or sequence timing may result in significant changes in image contrast,” said Benjamin Ellingson, Ph.D., of the Department of Radiological Sciences at the David Geffen School of Medicine at UCLA, and lead author of the BTIP paper. “Moreover, a variety of MR protocols are commonly used for the same purpose, further hindering interpretation of imaging results from different treatment centers in the absence of tight control and standardization of image acquisition parameters.”

The Brain Tumor Imaging Steering Committee published the new BTIP with scientific and practical justifications for the recommendations. The protocol is designed to minimize patient burden and has taken into account the different capabilities of imaging instruments across international medical centers. In addition, it incorporates new features that allow for potential enhancements in the analysis of tumor imaging data.

The next phase of this effort is to achieve field-wide clinical trial adoption and use of the protocol. The JBTDDC is actively requesting from major U.S. and European neuro-oncology clinical trial co-operative groups, as well as biopharmaceutical sponsors, the incorporation of the protocol as the standard for use in their future brain tumor clinical trials.

For more information: www.braintumor.org

Related Content

Henry Ford Cancer Institute First in World to Install Viewray MRIdian Linac
News | Image Guided Radiation Therapy (IGRT) | June 19, 2017
The Henry Ford Cancer Institute is the first in Michigan – and first in the world – to offer patients advanced...
The Magnetom Vida with BioMatrix technology
News | Magnetic Resonance Imaging (MRI) | June 16, 2017
The U.S. Food and Drug Administration (FDA) has cleared the Magnetom Vida 3 Tesla (3T) magnetic resonance imaging (MRI...
Stéphane Bordas, Professor in Computational Mechanics at the Faculty of Science, Technology and Communication of the University of Luxembourg, and his team have developed methods to train surgeons, help them rehearse for such complex operations and guide them during surgery

Stéphane Bordas, Professor in Computational Mechanics at the Faculty of Science, Technology and Communication of the University of Luxembourg, and his team have developed methods to train surgeons, help them rehearse for such complex operations and guide them during surgery. Image © Legato Team / University of Luxembourg.

News | Information Technology | June 16, 2017
Researchers from the University of Luxembourg, in cooperation with the University of Strasbourg, have developed a...
New Metamaterial-Enhanced MRI Technique Tested on Humans
News | Magnetic Resonance Imaging (MRI) | May 31, 2017
Scientists from the Netherlands and Russia designed and tested a new metasurface-based technology for enhancing the...
FDA says gadolinium retention in the brain is not a safety issue
Feature | Magnetic Resonance Imaging (MRI) | May 25, 2017
A U.S. Food and Drug Administration (FDA) review of the safety ramifications of gadolinium-based contrast agents for...
Targeted MRI Could Pinpoint Aggressive Prostate Cancers Before They Spread

The ZD2-Gd probe, represented by the orange ball and green arrow, binds to the EDB-FN in the prostate cancer cells with high metastatic potential. This results in a strong MRI signal (upper right). Prostate cancer cells with low metastatic potential have no EDB-FN and so there is no MRI signal (lower right). Credit: Han, et al., Bioconjug Chem-Apr-2017

News | Prostate Cancer | May 24, 2017
A research team funded by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) has engineered a...
News | Image Guided Radiation Therapy (IGRT) | May 24, 2017
The University Medical Centre (UMC) Utrecht in the Netherlands recently treated the first patient as part of a clinical...
Asterias MRI Data Shows AST-OPC1 Cells Prevent Cavitation in Severe Spinal Cord Injury Patients
News | Orthopedic Imaging | May 23, 2017
Asterias Biotherapeutics Inc. recently announced new positive serial magnetic resonance imaging (MRI) data from its...
MRI Offers New Insights Into Tumor Metabolism
News | Magnetic Resonance Imaging (MRI) | May 17, 2017
May 17, 2017 — Tumors, inflammation and circulatory disorders locally disturb the body's acid-base balance.
Study Indicates Q-Collar May Help Protect Football Players' Brain Function
News | Neuro Imaging | May 15, 2017
A new study of high school football players adds to mounting evidence that the Q-Collar may help reduce brain injury...
Overlay Init