News | PET Imaging | September 23, 2015

New Single-Scan Method Could Detect Blood Clots Throughout the Body

PET tracer technology has high success rate in rats

blood clot detection, single scan, rats, radionuclides, Peter Caravan, whole body

The whole body of a rat can be imaged for blood clots with one PET scan (which is overlaid here on an MRI image) using the FBP8 probe. Arrow points to a blood clot. Image courtesy of Peter Caravan, Ph.D.

September 23, 2015 — New research describes a method, tested in rats, that may someday allow healthcare providers to quickly scan the entire body for a blood clot. The research was presented at the 250th National Meeting & Exposition of the American Chemical Society (ACS), Aug. 16-20, in Boston.

If a person suffers a stroke that stems from a blood clot, their risk for a second stroke skyrockets, said Peter Caravan, Ph.D. The initial blood clot can break apart and cause more strokes if it is not quickly found and treated. Depending on where the blood clot is located, the treatment varies — some of them respond well to drugs, while others are better addressed with surgery.

To locate a blood clot, a physician may need to use three different methods: ultrasound to check the carotid arteries or legs, magnetic resonance imaging (MRI) to scan the heart and computed tomography to view the lungs. "It's a shot in the dark," Caravan said. "Patients could end up being scanned multiple times by multiple techniques in order to locate a clot. We sought a method that could detect blood clots anywhere in the body with a single whole-body scan."

In previous work, Caravan's team at the Martinos Center for Biomedical Imaging at Massachusetts General Hospital identified a peptide that binds specifically to fibrin — an insoluble protein fiber found in blood clots. In the current study, they developed a blood clot probe by attaching a radionuclide to the peptide. Radionuclides can be detected anywhere in the body by an imaging method called positron emission tomography (PET). The researchers used different radionuclides and peptides, as well as different chemical groups for linking the radionuclide to the peptide, to identify which combination would provide the brightest PET signal in blood clots. They ultimately constructed and tested 15 candidate blood clot probes.

The researchers first analyzed how well each probe bound to fibrin in a test tube, and then they studied how well the probe detected blood clots in rats. "The probes all had a similar affinity to fibrin in vitro, but, in rats, their performances were quite different," said Caravan. He attributed these differences to metabolism. Some probes were broken down quickly in the body and could no longer bind to blood clots, but others were resistant to metabolism. "The best probe was the one that was the most stable," he said. The team is moving into the next phase of research with this best-performing probe, called FBP8, which stands for "fibrin binding probe #8." It contained copper-64 as the radionuclide.

"Of course, the big question is, 'How well will these perform in patients?'" Caravan said. He explained that the group is hoping to start testing the probe in human patients in the fall, but it could take an additional five years of research before the probe is approved for routine use in a clinical setting.

For more information: www.nmr.mgh.harvard.edu

Related Content

Doctor-Patient Discussions Neglect Potential Harms of Lung Cancer Screening
News | Lung Cancer | August 15, 2018
August 15, 2018 — Although national guidelines advise doctors to discuss the benefits and harms of...
PET Tracer Identifies Estrogen Receptor Expression Differences in Breast Cancer Patients
News | PET Imaging | August 09, 2018
In metastatic breast cancer, prognosis and treatment is largely influenced by estrogen receptor (ER) expression of the...
Cardiac Imaging Reveals Roots of Preeclampsia Damage in Pregnant Women
News | Women's Health | August 07, 2018
Johns Hopkins researchers say a heart imaging study of scores of pregnant women with the most severe and dangerous form...
Cardiac Monitoring a Higher Priority for High-Risk Breast Cancer Patients
News | Cardio-oncology | August 07, 2018
August 7, 2018 — While heart failure is an uncommon complication of...
Novel PET Imaging Method Could Track and Guide Type 1 Diabetes Therapy
News | PET Imaging | August 03, 2018
Researchers have discovered a new nuclear medicine test that could improve care of patients with type 1 diabetes. The...
computed tomography brain scan

Image courtesy of Pixabay

News | Clinical Trials | July 19, 2018
The use of computed tomography (CT) scans has increased dramatically over the last two decades. CT scans greatly...
CT Decision Instrument Reliably Guides Pediatric Blunt Trauma imaging Decisions

This is a four-site prospective observational cohort. Image courtesy of Kirsty Challen, B.Sc., MBCHB, MRES, Ph.D., Lancashire Teaching Hospitals, United Kingdom.

News | Clinical Decision Support | July 18, 2018
A new study finds The Pediatric NEXUS Head Computed Tomography (CT) Decision Instrument (DI) reliably identifies blunt...
Study Points to Need for Performance Standards for EHR Usability and Safety
News | Electronic Medical Records (EMR) | July 18, 2018
A novel new study provides compelling evidence that the design, development and implementation of electronic health...
Artificial Intelligence Provides Faster, Clearer MRI Scans

A new artificial-intelligence-based approach to image reconstruction, called AUTOMAP, yields higher quality images from less data, reducing radiation doses for CT and PET and shortening scan times for MRI. Shown here are MR images reconstructed from the same data with conventional approaches, at left, and AUTOMAP, at right. Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital

News | Artificial Intelligence | July 17, 2018
A research team with funding from the National Institute for Biomedical Imaging and Bioengineering (NIBIB) has...
Researchers Trace Parkinson’s Damage in the Heart
News | PET Imaging | July 17, 2018
A new way to examine stress and inflammation in the heart will help Parkinson’s researchers test new therapies and...
Overlay Init