News | Breast Imaging | April 22, 2021

New Research Presented on iCAD’s ProFound AI

Studies presented at two leading breast imaging conferences demonstrate ProFound AI helps radiologists identify normal mammograms and those with increased likelihood of malignancy with precision

#SBI #NCoBC Studies presented at two leading breast imaging conferences demonstrate ProFound AI helps radiologists identify normal mammograms and those with increased likelihood of malignancy with precision

April 22, 2021 —iCAD, Inc. announced that new research supporting the clinical value of ProFound AI for Digital Breast Tomosynthesis (DBT) was presented at the Society of Breast Imaging (SBI) Symposium, April 9-11, and at the National Consortium of Breast Centers (NCBC) Annual Interdisciplinary Breast Center Conference (NCoBC), April 16-19.

Emily Conant, M.D., Professor and Division Chief of Breast Imaging at the University of Pennsylvania Medical Center, presented findings from a retrospective analysis involving ProFound AI for DBT in a presentation titled “Feasibility of automated identification of low-likelihood of cancer cases in digital breast tomosynthesis screening,” at the SBI Symposium. At the NCoBC Interdisciplinary Breast Center Conference, Mark Traill, M.D., University of Michigan Health, presented findings from a study titled “Correlation between BI-RADS Assessment Categories and Artificial Intelligence Case Scores,” which was a winner in the “Breast Disease Diagnosis and Management” category.

“These two studies both suggest that ProFound AI Case Scores provide valuable insights that can help clinicians more efficiently identify normal mammograms, which may directly translate to time-savings benefits,” said Michael Klein, Chairman and CEO of iCAD. “In addition, ProFound AI is clinically proven to improve radiologists’ sensitivity while simultaneously improving their specificity, which is a huge performance achievement in breast care. With the addition of these two important abstracts, research now shows how Case Scores can be used in the clinical setting to help radiologists feel more confident in their decisions about when a mammogram is normal.”

According to study findings presented by Conant at the SBI Symposium, ProFound AI for DBT accurately identified 33.4 percent of normal screening DBT exams with no cancers being missed, based solely on the ProFound AI Case Score. When researchers also factored in breast density and age, ProFound AI identified 58.6 percent of normal cases with no false negatives.

“Our retrospective study demonstrates the feasibility that clinical algorithms have the potential to triage and reduce screening DBT workload by flagging normal mammograms using an AI system, and also prioritizing complex cases that are more likely to require additional review or evaluation,” said Conant. “We are pleased to have our research add to the important growing body of evidence supporting the significance and value of AI in breast screening.”  

The study was conducted to evaluate the thresholds at which the ProFound AI system could be used for triaging DBT exams to reach a minimum rate of false negatives per 1,000 screened in an enriched dataset of 506 biopsy-proven cancer cases and 1,293 non-cancer cases with 320 days of negative follow-up. A consecutive series of cases were collected from 18 sites in the United States and three sites in France.

In addition, new data presented by Mark Traill, M.D., at the NCoBC Interdisciplinary Breast Center Conference highlights the comparison of ProFound AI Case Scores to BI-RADS assessment categories determined by a single radiologist without using AI in a retrospective analysis. Researchers used ProFound AI on 890 consecutive DBT studies and 50 consecutive cases with biopsy-proven breast cancer detected with DBT. Results showed a strong positive correlation between a ProFound AI Case Score of less than 60 percent and patients assessed as likely to be normal (BI-RADS 1 or 2), while most of the biopsy-proven cancers had a Case Score of greater than 60 percent.

“We wanted to describe the Case Score distribution in a screening population to better understand the significance of score value as a clinical decision tool,” said Traill. “We found a very strong correlation between a Case Score of less than 60 percent and a BI-RADS score assessment of 1 or 2. Also, only 15 percent of the Case Scores were greater than 60 percent, but this group contained most of the detected cancers. As a clinical decision tool, a Case Score above 60 percent is an independent indicator of higher chance of underlying malignancy. This is very helpful in guiding the intensity of the cancer search, while improving workflow functionality and reducing stress for the reading radiologist.”

ProFound AI for DBT is a high-performance, deep-learning workflow solution trained to detect malignant soft-tissue densities and calcifications. It became the first 3D tomosynthesis software using artificial intelligence (AI) to be FDA cleared in December 2018. Built with the latest in deep-learning technology, ProFound AI for DBT rapidly analyzes each tomosynthesis image, detecting malignant soft tissue densities. Certainty of Finding and Case Scores are relative scores computed by the ProFound AI algorithm and represent its confidence that a detection or case is malignant. The Certainty of Finding scores help radiologists by aiding in clinical decision making. Case Scores, which are assigned to each case by the algorithm, help clinicians to gain a sense of case complexity, which may be useful for prioritizing the reading worklist. In a reader study published in Radiology: Artificial Intelligence, ProFound AI for DBT Version 2.0 was clinically proven to reduce reading time for radiologists by 52.7 percent, improve radiologists’ sensitivity by 8 percent, and reduce the rate of false positives and unnecessary patient recalls by 7.2 percent.

The latest version of ProFound AI for DBT, version 3.0, was recently cleared by the FDA in March 2021. Compared to previous versions of the software, the ProFound AI 3.0 algorithm offers up to an additional 10 percent improvement in specificity performance and up to an additional 1 percent improvement in sensitivity over its previous deep-learning AI software generation (ProFound AI Version 2.1). ProFound AI version 3.0 also offers up to 40 percent faster processing on the new PowerLook platform.2 ProFound AI version 3.0 was developed using over five million images from 30,000 cases, including almost 8,000 biopsy-proven cancers, and validated on approximately one million images from 3,500 cases that included 1,200 biopsy-proven cancers.

iCAD’s Breast Health Solutions suite also includes software to evaluate breast density, ProFound AI for 2D Mammography, and ProFound AI Risk, the world’s first and only clinical decision support tool that provides an accurate two-year breast cancer risk estimation that is truly personalized for each woman, based only on a screening mammogram. 

For more information:


Related Content

Registration is now open for the Radiological Society of North America (RSNA) 107th Scientific Assembly and Annual Meeting, the world’s largest annual radiology forum, to be held at McCormick Place Chicago, Nov. 28 – Dec. 2, 2021

Getty Images

News | RSNA | July 21, 2021
July 21, 2021 — Registration is now open for the Radiological Society of North America (...
According to ARRS’ American Journal of Roentgenology (AJR), return to routine screening for BI-RADS 3 lesions on supplemental automated whole-breast US (ABUS) substantially reduces the recall rate, while being unlikely to result in adverse outcome

Normal right mediolateral oblique (A) and craniocarudal (B) view screening mammograms demonstrate density C breasts. Coronal (C), transverse (D), and reconstructed lateral (E) views from supplemental automatic breast ultrasound (ABUS) demonstrates 7 mm circumscribed slightly hypoechoic circumscribed lesion at 11 o’clock position in right breast. Lesion was classified as BI-RADS 3. Patient has undergone yearly mammograms for 4 years following the ABUS examination with no breast cancer diagnosis.

News | Breast Imaging | July 16, 2021
July 16, 2021 —...
Volpara now holds 98 granted patents across 27 countries
News | Breast Imaging | July 16, 2021
July 16, 2021 — Volpara has recently been granted another patent by the...
Interviews with the 1,000 at-risk patients also led to some interesting conclusions, Fine said. Even in the early days of 3D mammography, most women interviewed had at least heard about the technology.

Getty Images

News | Mammography | July 15, 2021
July 15, 2021 —  For any type of diagnostic test, technology that helps improve the reliability of test results is a
ujifilm's robust medical systems portfolio includes a comprehensive product lineup covering CT, MRI, fluoroscopy, digital radiography, women’s health, ultrasound, systems integration, endoscopy and endosurgery, enterprise imaging, assisted reproductive technology, cell culture media, cell therapy development, In-Vitro diagnostics (IVD), and investigational drug development
News | Radiology Imaging | July 14, 2021
July 14, 2021 — Fujifilm announced the launch of the ...
A new study set out to learn more about breast health for Black women and to establish a better understanding of the breast screening landscape by analyzing mammograms, screening intervals and interpretation performance for Asian, Black and white women across health systems throughout the United States, with participation from Advocate Health Care, Sanford Health and the University of Pennsylvania Health System.

Getty Images

Feature | Breast Imaging | July 06, 2021 | By Linda Goler Blount, MPH
Due to dangerous implications for years to come, facilities must increase efficiency and capacity for breast cancer care to recover from the impact of COVID-19

Getty Images

Feature | Breast Imaging | July 06, 2021 | By Ananth Ravi, Ph.D.
The challenges
Breast cancer recently surpassed lung cancer as the number 1 diagnosed cancer in the U.S., excluding nonmelanoma skin cancer. Additionally, the National Cancer Institute recently predicted an almost 10,000 excess deaths from breast and colorectal cancers over the next 10 years as a direct result of the pandemic, making it now more important than ever for women to take control over their breast health.
News | Artificial Intelligence | June 25, 2021
June 25, 2021 — Breast cancer recently ...
According to a new study, by the Harvey L. Neiman Health Policy Institute and the American College of Radiology’s National Mammography Database Committee, the most influential radiologist characteristics impacting mammography interpretive performance were geography, breast sub-specialization, performance of diagnostic mammography, and performance of diagnostic ultrasound.

Getty Images

News | Breast Imaging | June 23, 2021
June 23, 2021 — According to a new ...