News | August 19, 2014

New Hand-held Device Uses Lasers, Sound Waves for Deeper Melanoma Imaging

August 19, 2014 — A new hand-held device that uses lasers and sound waves may change the way doctors treat and diagnose melanoma, according to a team of researchers from Washington University in St. Louis. The instrument, described in a paper published in The Optical Society’s (OSA) journal Optics Letters, is the first that can be used directly on a patient and accurately measure how deep a melanoma tumor extends into the skin, providing valuable information for treatment, diagnosis or prognosis.

Melanoma is the fifth most common cancer type in the United States, and incidence rates are rising faster than those of any other cancer. It's also the deadliest form of skin cancer, causing more than 75 percent of skin-cancer deaths.

The thicker the melanoma tumor, the more likely it will spread and the deadlier it becomes, says dermatologist Lynn Cornelius, one of the study's coauthors. Being able to measure the depth of the tumor in vivo enables doctors to determine prognoses more accurately — potentially at the time of initial evaluation — and plan treatments and surgeries accordingly.

The problem is that current methods cannot directly measure a patient's tumor very well. Because skin scatters light, high-resolution optical techniques don't reach deep enough. "None are really sufficient to provide the two to four millimeter penetration that's at least required for melanoma diagnosis, prognosis or surgical planning," says engineer Lihong Wang, another coauthor on the Optics Letters paper.

Researchers have tried other methods, but they aren't much better. High-frequency ultrasound doesn't have enough image contrast, and magnetic resonance imaging and positron emission tomography have insufficient resolution and require expensive and bulky instruments.

"Any type of tissue diagnosis at this point in time requires taking tissue out of the person and processing it and looking at it under the microscope," Cornelius says.

But because taking a biopsy often only involves the removal of a part of a tumor — when it's in a cosmetically sensitive area, for instance — provisional measurements of the tumor depth are not always reliable. If, at the time of excision, the surgeon finds that the tumor goes deeper than initially thought, the patient may need yet another surgery.

Recently, researchers including Wang have applied an approach called photoacoustic microscopy, which can accurately measure melanoma tumors directly on a patient's skin — thus allowing doctors to avoid uncertainty in some circumstances.

The technique relies on the photoacoustic effect, in which light is converted into vibrations. In the case of the new device, a laser beam shines into the skin at the site of a tumor. Melanin, the skin pigment that is also in tumors, absorbs the light, whose energy is transferred into high-frequency acoustic waves. Unlike light, acoustic waves don't scatter as much when traveling through skin. Tumor cells will produce more melanin than the surrounding healthy skin cells, and as a result, the acoustic waves can be used to map the entire tumor with high resolution. The device has a detector that can then turn the acoustic signal into a three-dimensional image on a screen.

Wang, Cornelius and their colleagues previously built a similar desktop device that shines the laser directly onto the tumor. But so much light is absorbed that very little penetrates to the tumor's lower layers. The latest version, however, is not only handheld, but it also delivers light around and below the tumor, which generates a bright image of the tumor's bottom and an accurate measurement of its depth.

The researchers tested their device on both artificial tumors made of black gelatin and on real ones in live mice, showing that the instrument could accurately measure the depths of tumors — and do it in living tissue.

Initially, this tool will be mainly used for improving how doctors plan and prepare for surgeries, Cornelius says. But what is especially exciting, she adds, is that it can measure a tumor's entire volume—something that's never been possible with melanoma. If researchers can determine how the volume relates to cancer outcomes, then this tool could give doctors a new type of measurement for diagnosis and prognosis.

The researchers are now conducting further tests with human patients. The new device will have to prove effective in clinical trials before it is widely available. But other than that Wang says, the device is essentially ready for commercialization.

Paper: “Hand-held photoacoustic microscopy to detect melanoma depth in vivo,” Y. Zhou et al., Optics Letters, vol. 39, issue 16, pp. 4731-4734 (2014).

For more information: www.osa.org, www.OpticsInfoBase.org/OL

Related Content

Videos | RSNA | April 03, 2019
ITN Editor Dave Fornell takes a tour of some of the most interesting new medical imaging technologies displa
Four of the top pieces of content in March included news on proton therapy, including a 360 image and videos from ITN's recent visit to the Northwestern Medicine Proton Center in the Chicago suburbs. This image shows the main proton treatment room gantry at the proton center in Warrenville, Ill. Interview with Mark Pankuch, Ph.D.

Four of the top pieces of content in March included news on proton therapy, including a 360 image and videos from ITN's recent visit to the Northwestern Medicine Proton Center in the Chicago suburbs. This image shows the main proton treatment room gantry at the proton center in Warrenville, Ill.
 

Feature | April 02, 2019 | Dave Fornell, Editor and A.J. Connell
April 2, 2019 — Here is the list of the most popular content on the Imaging Technology News (ITN) magazine w
At #ACC.19, Siemens unveiled a version of its go.Top platform optimized for cardiovascular imaging. The newly packaged scanner can generate the data needed to do CT-based FFR (fractional flow reserve).

At #ACC.19, Siemens unveiled a version of its go.Top platform optimized for cardiovascular imaging. The newly packaged scanner can generate the data needed to do CT-based FFR (fractional flow reserve). Photo by Greg Freiherr

Feature | Cardiac Imaging | March 22, 2019 | By Greg Freiherr
Reflecting a trend toward the increased use of...
SyncVision iFR Co-registration from Philips Healthcare maps iFR pressure readings onto angiogram.

SyncVision iFR Co-registration from Philips Healthcare maps iFR pressure readings onto angiogram. Results from an international study presented at #ACC19 show that pressure readings in coronary arteries may identify locations of stenoses remaining after cardiac cath interventions.

Feature | Cardiac Imaging | March 18, 2019 | By Greg Freiherr
As many as one in four patients who undergo cath lab interventions can benefit from a technology that identifies the
Jennifer N. A. Silva, M.D., a pediatric cardiologist at Washington University School of Medicine in Saint Louis, Mo., describes “mixed reality” at ACC19 Future Hub.

Jennifer N. A. Silva, M.D., a pediatric cardiologist at Washington University School of Medicine in Saint Louis, Mo., describes “mixed reality” at ACC19 Future Hub.

Feature | Cardiac Imaging | March 17, 2019 | By Greg Freiherr
Virtual reality (VR) and its less immersive kin, augmented reality (AR), are gaining traction in some medical applica
WVU cardiology chief Partho Sengupta, M.D., describes at ACC 2019 how artificial intelligence already helps cardiologists in echocardiography.

WVU cardiology chief Partho Sengupta, M.D., describes at ACC 2019 how artificial intelligence already helps cardiologists in echocardiography. Photo by Greg Freiherr

Feature | Cardiac Imaging | March 16, 2019 | By Greg Freiherr
Machine learning is already having an enormous impact on cardiology, automatically calculating measurements in echoca
Podcast | Cardiac Imaging | March 15, 2019
Debate About Coronary Testing Highlights ACC Session
Podcast | Cardiac Imaging | March 12, 2019
How smart algorithms might reduce the burden of modern practice
Collage provided by Albert Hsiao

Collage depicts broad applications in machine learning or deep learning (DL) that can be applied to advanced medical imaging technologies. Size of the liver and its fat fraction — 22 percent — (top middle in collage) can be quantified automatically using an algorithm developed by Dr. Albert Hsiao and his team at the University of California San Diego. This and other information that might be mined by DL algorithms from CT and MR images could help personalize patients’ treatment. Collage provided by Albert Hsiao

Feature | Cardiac Imaging | March 11, 2019 | By Greg Freiherr
Computed tomography (CT) and magnetic resonance imaging (MRI) scans are chock full of information that might be used
Carestream Health has signed an agreement to sell its healthcare information systems (HCIS) business to Philips Healthcare. Image by geralt on Pixabay

Carestream Health has signed an agreement to sell its healthcare information systems (HCIS) business to Philips Healthcare. This includes its radiology and cardiology PACS and reporting software. Image by geralt on Pixabay 

News | Radiology Business | March 07, 2019
Carestream Health has signed an agr