News | August 19, 2014

New Hand-held Device Uses Lasers, Sound Waves for Deeper Melanoma Imaging

August 19, 2014 — A new hand-held device that uses lasers and sound waves may change the way doctors treat and diagnose melanoma, according to a team of researchers from Washington University in St. Louis. The instrument, described in a paper published in The Optical Society’s (OSA) journal Optics Letters, is the first that can be used directly on a patient and accurately measure how deep a melanoma tumor extends into the skin, providing valuable information for treatment, diagnosis or prognosis.

Melanoma is the fifth most common cancer type in the United States, and incidence rates are rising faster than those of any other cancer. It's also the deadliest form of skin cancer, causing more than 75 percent of skin-cancer deaths.

The thicker the melanoma tumor, the more likely it will spread and the deadlier it becomes, says dermatologist Lynn Cornelius, one of the study's coauthors. Being able to measure the depth of the tumor in vivo enables doctors to determine prognoses more accurately — potentially at the time of initial evaluation — and plan treatments and surgeries accordingly.

The problem is that current methods cannot directly measure a patient's tumor very well. Because skin scatters light, high-resolution optical techniques don't reach deep enough. "None are really sufficient to provide the two to four millimeter penetration that's at least required for melanoma diagnosis, prognosis or surgical planning," says engineer Lihong Wang, another coauthor on the Optics Letters paper.

Researchers have tried other methods, but they aren't much better. High-frequency ultrasound doesn't have enough image contrast, and magnetic resonance imaging and positron emission tomography have insufficient resolution and require expensive and bulky instruments.

"Any type of tissue diagnosis at this point in time requires taking tissue out of the person and processing it and looking at it under the microscope," Cornelius says.

But because taking a biopsy often only involves the removal of a part of a tumor — when it's in a cosmetically sensitive area, for instance — provisional measurements of the tumor depth are not always reliable. If, at the time of excision, the surgeon finds that the tumor goes deeper than initially thought, the patient may need yet another surgery.

Recently, researchers including Wang have applied an approach called photoacoustic microscopy, which can accurately measure melanoma tumors directly on a patient's skin — thus allowing doctors to avoid uncertainty in some circumstances.

The technique relies on the photoacoustic effect, in which light is converted into vibrations. In the case of the new device, a laser beam shines into the skin at the site of a tumor. Melanin, the skin pigment that is also in tumors, absorbs the light, whose energy is transferred into high-frequency acoustic waves. Unlike light, acoustic waves don't scatter as much when traveling through skin. Tumor cells will produce more melanin than the surrounding healthy skin cells, and as a result, the acoustic waves can be used to map the entire tumor with high resolution. The device has a detector that can then turn the acoustic signal into a three-dimensional image on a screen.

Wang, Cornelius and their colleagues previously built a similar desktop device that shines the laser directly onto the tumor. But so much light is absorbed that very little penetrates to the tumor's lower layers. The latest version, however, is not only handheld, but it also delivers light around and below the tumor, which generates a bright image of the tumor's bottom and an accurate measurement of its depth.

The researchers tested their device on both artificial tumors made of black gelatin and on real ones in live mice, showing that the instrument could accurately measure the depths of tumors — and do it in living tissue.

Initially, this tool will be mainly used for improving how doctors plan and prepare for surgeries, Cornelius says. But what is especially exciting, she adds, is that it can measure a tumor's entire volume—something that's never been possible with melanoma. If researchers can determine how the volume relates to cancer outcomes, then this tool could give doctors a new type of measurement for diagnosis and prognosis.

The researchers are now conducting further tests with human patients. The new device will have to prove effective in clinical trials before it is widely available. But other than that Wang says, the device is essentially ready for commercialization.

Paper: “Hand-held photoacoustic microscopy to detect melanoma depth in vivo,” Y. Zhou et al., Optics Letters, vol. 39, issue 16, pp. 4731-4734 (2014).

For more information: www.osa.org, www.OpticsInfoBase.org/OL

Related Content

American College of Radiology Releases New Patient-Oriented Appropriateness Criteria Summaries
News | Patient Engagement | January 19, 2018
January 19, 2018 — New Appropriateness Criteria (AC) Patient Summaries from the American College of Radiology (ACR) c
National Clinical Decision Support Company (NDSC) has an exclusive deal with the American College of Radiology (ACR) to provide medical imaging appropriate use criteria (AUC).

National Clinical Decision Support Company (NDSC) has an exclusive deal with the American College of Radiology (ACR) to provide medical imaging appropriate use criteria (AUC). 

Feature | Clinical Decision Support | January 18, 2018
January 18, 2018 — Change Healthcare announced the acquisition of National Decision Support Company (NDSC), a leader
Philips Introduces Technology Maximizer Program for Imaging Equipment Upgrades
Technology | Imaging | January 17, 2018
January 17, 2018 — Philips recently announced the launch of Technology Maximizer, a cross-modality program designed t
RSNA 2017 Celebrates Innovation in Radiology
News | Imaging | January 15, 2018
January 15, 2018 — The Radiological Society of North America’s...

Size comparison between 3-D printed prosthesis implant and a penny.

News | 3-D Printing | January 11, 2018
January 11, 2018 — Researchers using...
RSNA 2017 technical exhibits, expo floor, showing new radiology technology advances.
Feature | RSNA 2017 | January 11, 2018
January 11, 2018 — Here is a list of some of the key clinical study presentations, articles on trends and videos from
The artificial intelligence (AI) smart algorithm onboard the Infervision stroke product calculates the volume of bleed on the basis of multiple brain CT slices.

The AI smart algorithm onboard the Infervision stroke product calculates the volume of bleed on the basis of multiple brain CT slices. The size of the bleed volume indicates the urgency and type of treatment required.

Feature | Artificial Intelligence | January 10, 2018 | Greg Freiherr
Exhibitors at the 2017 Radiological Society of North American (RSNA) meeting rode the...
Upcoming radiology conferences, meetings and events. This photo is from the 2017 RSNA opening session.
News | January 09, 2018
ITN maintains a comprehensive listing of radiology specialty meetings on its website at ...
The new GE Healthcare Air Technology MRI coil design is 60 percent lighter than conventional coils, provides more flexibility and conforms to a patient’s anatomy like a blanket. The technology was unveiled at RSNA 2017 in late November.

The new GE Healthcare Air Technology MRI coil design is 60 percent lighter than conventional coils, provides more flexibility and conforms to a patient’s anatomy like a blanket. The technology was unveiled at RSNA 2017 in late November.

Feature | January 08, 2018 | Dave Fornell
Here is the list of the most popular articles and videos on the Imaging Technology News (ITN) magazine website from t
WEBINAR: Neuroimaging from a Clinical MRI Perspective, sponsored by Philips Healthcare. How to better manage your MRI department.
Webinar | Magnetic Resonance Imaging (MRI) | January 08, 2018
The CME credit webinar "Neuroimaging from a Clinical MRI Perspective," will explain how imaging departments can becom
Overlay Init