News | March 04, 2015

Use of FDG-PET imaging could reduce dose 65 to 80 percent

Hodgkin lymphoma, pediatric imaging, guidelines, radiation therapy, FDG-PET, CT

March 4, 2015 — The International Lymphoma Radiation Oncology Group (ILROG) has issued a guideline outlining the use of 3-D computed tomography (CT)-based radiation therapy planning and volumetric image guidance for treatment of pediatric Hodgkin lymphoma. The goal of the new guideline is to reduce the radiation dose to normal tissue, thus decreasing the risk of late side effects. The guideline will be published in the March-April issue of Practical Radiation Oncology (PRO), the clinical practice journal of the American Society for Radiation Oncology (ASTRO).

Historically, pediatric Hodgkin lymphoma patients were treated with the same chemotherapy and radiation regimens as adults, which potentially exposes their young, still-growing bodies to more treatment than necessary. Previous radiation therapy guidelines for pediatric Hodgkin lymphoma have focused on 2-D imaging and bony landmarks to define dose volumes for radiation therapy treatment, and treated large volumes of normal tissue in part because of uncertainty about which lymph node areas were involved.  

The new guideline describes how to effectively use modern imaging and innovations in radiation therapy planning technology to treat patients with pediatric Hodgkin lymphoma while decreasing the risk of late side effects, including second cancers and heart disease.

The authors describe methods for identifying target volumes for radiation therapy, and how to implement the concept of “involved site radiation therapy” to define radiation target volumes and limit dose to normal organs at risk. According to the guideline, accurate assessment of the extent and location of disease requires both contrast-enhanced CT as well as fluorodeoxyglucose-positron emission tomography (FDG-PET). The document describes how the evaluation of response to chemotherapy influences the targeting of the lymphoma and the volume of normal tissue treated, by using recently developed capacity to fuse CT and FDG-PET images taken before and after chemotherapy to CT imaging taken for radiation therapy planning.

“The emergence of new imaging technologies, more accurate ways of delivering radiation therapy and more detailed patient selection criteria have made a significant change in our ability to customize treatment for many cancer patients,” said David C. Hodgson, M.D., associate professor in the Department of Radiation Oncology at the University of Toronto in Toronto, a radiation oncologist at Princess Margaret Hospital/University Health Network in Toronto and lead author of the guideline. “This guideline has the potential to reduce the radiation therapy breast dose by about 80 percent and the heart dose by about 65 percent for an adolescent girl with Hodgkin lymphoma. This shift in more personalized treatment planning tailored to the individual patient’s disease will optimize risk-benefit considerations for our patients, and reduce the likelihood that they will suffer late effects from radiation therapy. We are also excited that these guidelines will be utilized in an upcoming Children’s Oncology Group Study of involved-site radiation therapy for high-risk Hodgkin lymphoma patients and eagerly await the study’s results.”

For more information: www.astro.org


Related Content

News | FDA

Nov. 26, 2025 — a2z Radiology AI has received U.S. FDA clearance for a2z-Unified-Triage, a single device that flags and ...

Time December 03, 2025
arrow
News | RSNA 2025

Nov. 13, 2025 — Nano-X Imaging Ltd., a medical imaging technology company, will showcase its Nanox.ARC X multi-source ...

Time November 25, 2025
arrow
News | Interventional Radiology

Nov. 12, 2025 — On Nov. 11, Huntsman Cancer Institute at the University of Utah (the U) opened its first specialized ...

Time November 13, 2025
arrow
Feature | Teleradiology | Kyle Hardner

Once viewed as a solution for after-hours coverage, teleradiology is rapidly expanding into a critical part of radiology ...

Time November 06, 2025
arrow
News | Women's Health

Nov. 3, 2025 — —A new radioimmunotherapy approach has the potential to cure human epidermal growth factor receptor 2 ...

Time November 04, 2025
arrow
News | Magnetic Resonance Imaging (MRI) | Children's Hospital Los Angeles

Oct. 28, 2025 — Bronchopulmonary dysplasia (BPD) is the most common — and most serious — complication of extreme ...

Time October 31, 2025
arrow
Feature | Kyle Hardner

Radiotherapy contributes to about 40% of all cancer cures but still lags behind systemic therapy in funding and ...

Time October 21, 2025
arrow
News | Radiology Imaging | UC San Diego Health

Oct. 16, 2025 — A strategic collaboration between UC San Diego Health and GE HealthCare will focus on bringing advanced ...

Time October 20, 2025
arrow
News | Mammography

Sept. 3, 2025 — According to ARRS’ American Journal of Roentgenology (AJR), a commercial artificial intelligence (AI) ...

Time September 09, 2025
arrow
News | Radiation Oncology

Sept. 02, 2025 — Alpha Tau Medical Ltd., the developer of the alpha-radiation cancer therapy Alpha DaRT has announced ...

Time September 05, 2025
arrow
Subscribe Now