News | March 04, 2015

New Dose Guidelines Issued for Pediatric Hodgkin Lymphoma Treatment

Use of FDG-PET imaging could reduce dose 65 to 80 percent

Hodgkin lymphoma, pediatric imaging, guidelines, radiation therapy, FDG-PET, CT

March 4, 2015 — The International Lymphoma Radiation Oncology Group (ILROG) has issued a guideline outlining the use of 3-D computed tomography (CT)-based radiation therapy planning and volumetric image guidance for treatment of pediatric Hodgkin lymphoma. The goal of the new guideline is to reduce the radiation dose to normal tissue, thus decreasing the risk of late side effects. The guideline will be published in the March-April issue of Practical Radiation Oncology (PRO), the clinical practice journal of the American Society for Radiation Oncology (ASTRO).

Historically, pediatric Hodgkin lymphoma patients were treated with the same chemotherapy and radiation regimens as adults, which potentially exposes their young, still-growing bodies to more treatment than necessary. Previous radiation therapy guidelines for pediatric Hodgkin lymphoma have focused on 2-D imaging and bony landmarks to define dose volumes for radiation therapy treatment, and treated large volumes of normal tissue in part because of uncertainty about which lymph node areas were involved.  

The new guideline describes how to effectively use modern imaging and innovations in radiation therapy planning technology to treat patients with pediatric Hodgkin lymphoma while decreasing the risk of late side effects, including second cancers and heart disease.

The authors describe methods for identifying target volumes for radiation therapy, and how to implement the concept of “involved site radiation therapy” to define radiation target volumes and limit dose to normal organs at risk. According to the guideline, accurate assessment of the extent and location of disease requires both contrast-enhanced CT as well as fluorodeoxyglucose-positron emission tomography (FDG-PET). The document describes how the evaluation of response to chemotherapy influences the targeting of the lymphoma and the volume of normal tissue treated, by using recently developed capacity to fuse CT and FDG-PET images taken before and after chemotherapy to CT imaging taken for radiation therapy planning.

“The emergence of new imaging technologies, more accurate ways of delivering radiation therapy and more detailed patient selection criteria have made a significant change in our ability to customize treatment for many cancer patients,” said David C. Hodgson, M.D., associate professor in the Department of Radiation Oncology at the University of Toronto in Toronto, a radiation oncologist at Princess Margaret Hospital/University Health Network in Toronto and lead author of the guideline. “This guideline has the potential to reduce the radiation therapy breast dose by about 80 percent and the heart dose by about 65 percent for an adolescent girl with Hodgkin lymphoma. This shift in more personalized treatment planning tailored to the individual patient’s disease will optimize risk-benefit considerations for our patients, and reduce the likelihood that they will suffer late effects from radiation therapy. We are also excited that these guidelines will be utilized in an upcoming Children’s Oncology Group Study of involved-site radiation therapy for high-risk Hodgkin lymphoma patients and eagerly await the study’s results.”

For more information: www.astro.org

Related Content

New Prostate Cancer Radiotherapy Technique Aims to Preserve Sexual Function
News | Radiation Therapy | June 18, 2018
A multicenter clinical trial being led by UT Southwestern physicians is testing a technique for sparing nerve bundles...
Report Finds Identifying Patients for Lung Cancer Screening Not So Simple
News | Lung Cancer | June 18, 2018
New findings in the current issue of The American Journal of Managed Care suggest that getting the right patients to...
Elekta Unity High-Field MR-Linac Receives CE Mark
News | Image Guided Radiation Therapy (IGRT) | June 18, 2018
Elekta announced that its Elekta Unity magnetic resonance radiation therapy (MR/RT) system has received CE mark,...
Weight-Bearing CT International Study Group Hosts  Scientific Session at AOFAS Conference
News | Computed Tomography (CT) | June 15, 2018
June 15, 2018 —The Weight-Bearing CT International Study Group will host a scientific session on the benefits of weig
Florida Hospital First in State to Adopt NeuroLogica's BodyTom Elite CT
News | Computed Tomography (CT) | June 14, 2018
June 14, 2018 — NeuroLogica, a subsidiary of Samsung Electronics Co.
Washington University in St. Louis Begins Clinical Treatments With ViewRay MRIdian Linac
News | Image Guided Radiation Therapy (IGRT) | June 14, 2018
June 14, 2018 — The Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine in S
Riverain Technologies Issued U.S. Patent for Vessel Suppression Technology
News | Computed Tomography (CT) | June 14, 2018
Riverain Technologies announced that the United States Patent and Trademark Office (USPTO) has awarded the company a...
360 Photos | 360 View Photos | June 14, 2018
This is a 360 degree image from the Canon Aquilion 64-slice...
American Society of Neuroradiology Honors Peter Chang with Cornelius G. Dyke Memorial Award
News | Neuro Imaging | June 13, 2018
Peter Chang, M.D., current neuroradiology fellow at UCSF and recently recruited co-director of the UCI Center for...
Accuray TomoTherapy System Beneficial in Two Total Body Irradiation Studies
News | Radiation Therapy | June 13, 2018
Recently published data from two new studies demonstrate the benefits of Accuray’s TomoTherapy System in the delivery...
Overlay Init