News | July 28, 2008

New CT Algorithm May Cut Treatment Time

July 29, 2008 - Physicians and medical physicists often spend hours drawing lines around tumors and organs in CT images, causing a major bottleneck in cancer treatment.

A new semi-automatic user-interface could reduce the time and fatigue associated with this meticulous task.

Radiation therapy begins with a CT scan in which 100 or so individual images (slices) are combined to create a 3D map of the region around the tumor. During the following segmentation step, all the organs and sensitive tissues must be identified and outlined for each slice, so that the medical physicist can plan a treatment that provides the highest dose to the target, while sparing the surrounding healthy tissue.

The resolution in CT scans is constantly increasing, which means more slices and more time required for segmentation. In addition, moving organs like the lung are starting to be scanned several times to form a time sequence. This can multiply by 10 the number of images an expert must analyze.

To help with this overwhelming load, Yu-chi Hu ([email protected]) and Gig Mageras of the Memorial Sloan-Kettering Cancer Center in New York, NY, along with Michael Grossberg of the City College of New York have developed a computer program that can segment organs with just a small amount of user input. Starting with one CT image, the user makes a crude outline of each organ. The computer takes this rough sketch and plugs it into a statistically-based algorithm, which it then uses to generate contours in subsequent images. The user checks the computer-drawn boundaries and can correct mistakes with tiny brushstrokes on the computer screen. These corrections are reincorporated by the software to better refine the algorithm.

With funding from the NIH, the team tested the user interface on several CT scans and found that on average an image could be segmented in roughly 6 seconds with the computer's help, instead of the 30 seconds or more in the unaided case. The researcher's algorithm correctly identified 98 percent of the image pixels, which was a higher precision than other contour-drawing algorithms that the researchers tested. The group is now planning to put the system into clinical use within 6 to 9 months.

For more information: www.aapm.org

Source: American Association of Physicists in Medicine

Related Content

Hospital for Special Surgery Invests in Sectra Orthopedic 3-D Planning Software
News | Orthopedic Imaging | January 18, 2018
January 18, 2018 – International medical imaging IT and cybersecurity company Sectra announces that Hospital for Spec
Sponsored Content | Videos | Enterprise Imaging | January 16, 2018
Built on an over 25-year pioneering legacy in the advanced visualization industry, Vital continues to expand on three
RSNA 2017 Celebrates Innovation in Radiology
News | Imaging | January 15, 2018
January 15, 2018 — The Radiological Society of North America’s...
EchoPixel Showcases Next-Generation Surgical Planning With True 3-D Interactive Mixed Reality Software
News | Advanced Visualization | January 08, 2018
January 8, 2018 — EchoPixel showcased the latest version of True 3D, its interactive,...
FDA Announces Final Guidance and Webinar for Technical Considerations for 3-D-Printed Medical Devices
News | 3-D Printing | January 03, 2018
The U.S. Food and Drug Administration (FDA) issued the final version of the guidance, “Technical Considerations for...
Median Technologies Collaborating With Chinese Hospital for Lung Cancer Screening Programs. Dave Fornell
News | Lung Cancer | December 22, 2017
Median Technologies recently announced a research collaboration agreement with Xingtai People's Hospital, Xingtai City...
News | Enterprise Imaging | December 21, 2017
Vital Images showcased enhancements to its enterprise imaging solutions at the Radiological Society of North America (...
Videos | Neuro Imaging | December 21, 2017
Max Wintermark, M.D., professor of radiology and chief of neuroradiology, Stanford Hospital and Clinics, discussed MR
Philips Announces New 3-D Printing Integration With 3D Systems and Stratasys
News | 3-D Printing | December 21, 2017
Philips recently announced agreements with 3D Systems and Stratasys, two global leaders in the 3-D printing industry,...
Videos | RSNA 2017 | December 20, 2017
ITN and DAIC Editor Dave Fornell takes a tour of some of the most interesting new medical imaging technologies on the
Overlay Init