Technology | June 13, 2011

Multi-Tracer Platform Expands Cassette-Based Tracer Production to FDG Citrate Formulation

June 13, 2011 - Expanding upon its radiopharmacy platform, GE Healthcare is introducing new tracers to the FASTlab multi-tracer platform, an advanced positron emission tomography (PET) chemistry system on which the company is also developing PET proprietary agents. The system offers a number of significant enhancements to address the ever-evolving challenges of tracer production. With the addition of three new cassettes, users can access and produce FDG phosphate formulation, NaF, FMISO (HPLC free), FLT (HPLC free) and FDG citrate formulation (equivalent to Tracerlab MX standard formulation) on the same platform.

To facilitate regulatory preparation work, DMF type V, describing the platform, and DMF type II, outlining tracer cassette and synthesis, have been filed with the FDA.

FASTlab is an open-ended platform capable of accommodating new tracers as they are developed, eliminating the need to buy a dedicated synthesis module to process a different tracer. The innovative hardware and user-interface allows for consecutive production of different tracers on the same module. Clinicians just need to swap the cassette and the system is ready for the next tracer. Cassettes are barcoded — when loaded into the system, the processor reads the barcode and automatically downloads the right production parameters and batch information, helping customers achieve CFR 212 cGMP compliance. FASTlab is also a key component of Tracercenter, one source and one complete solution for enabling compliant PET tracer production.

For more information: www.gehealthcare.com

Related Content

Study Demonstrates First Human Application of Novel PET Tracer for Prostate Cancer

Transaxial 11Csarcosine hybrid PET/CT showed a (triangulated) adenocarcinoma in the transition zone of the anterior right prostate gland on PET (A), CT (B), and a separately obtained T2?weighted MR sequence (C) with resulting PET/MRI registration (D). Image courtesy of M. Piert et al., University of Michigan, Ann Arbor, Mich.

News | Radiopharmaceuticals and Tracers | August 16, 2017
In the featured translational article in the August issue of The Journal of Nuclear Medicine, researchers at the...
PET/CT Tracer Identifies Vulnerable Lesions in Non-Small Cell Lung Cancer Patients

Example of a patient with an upper left lung NSCLC: A: FDG; B: FDG PET/CT; C: Planning radiotherapy based on FDG (66Gy) with BTVm (GTV), CTV and PTV; D: PET FMISO E: FMISO PET/CT; F: boost based on the FMISO PET (76Gy) with BTVh (biological hypoxic target volume) and PTV boost. Credit: QuantIF – LITIS EA 4108 – FR CNRS 3638, Henri Becquerel Cancer Center, Rouen, France

News | PET-CT | July 14, 2017
July 14, 2017 — Fluorine-18 (18F)-fluoromisonidazole (FMISO) is a positron emission tomography (PET)...
Novel PET Tracer Detects Small Blood Clots

PET images (MIP 0-60 min) of three Cynomolgus monkeys. Strong signals are detected at the sites where inserted catheters had roughened surfaces. Almost no other background signal is visible. Only accumulation in the gallbladder becomes visible at the bottom of the image. Credit: Piramal Imaging GmbH, Berlin Germany.

News | PET Imaging | July 07, 2017
July 7, 2017 — Blood clots in veins a
Sponsored Content | Videos | Clinical Decision Support | June 29, 2017
Rami Doukky, M.D., system chair, Division of Cardiology, professor of medicine, Cook County Health and Hospitals Syst
Dual-Agent PET/MR With Time of Flight Detects More Cancer

Tc-99m MDP bone scan (left) is negative for osseous lesions. NaF/FDG PET/MRI (right and second slide) confirms absence of bone metastases, but shows liver metastases. Image courtesy of Stanford University.

News | PET-MRI | June 20, 2017
Simultaneous injections of the radiopharmaceuticals fluorine-18 fluorodeoxyglucose (18F-FDG) and 18F-sodium fluoride (...
Combined Optical and Molecular Imaging Could Guide Breast-Conserving Surgery

WLE specimen from a patient with a grade 3, ER-/HER2-, no special type (NST) carcinoma. (A) Cerenkov image; (B) Grey-scale photographic image overlaid with Cerenkov signal. An increased signal from the tumor is visible (white arrows); mean radiance is 871 ± 131 photons/s/cm2/sr, mean TBR is 3.22. Both surgeons measured the posterior margin (outlined in blue) as 2 mm (small arrow); a cavity shaving would have been performed if the image had been available intraoperatively. The medial margin (outlined in green) measured >5 mm by both surgeons. Pathology ink prevented assessing the lateral margin; a phosphorescent signal is visible (open arrows). (C) Specimen radiography image. The absence of one surgical clip to mark the anterior margin, and the odd position of the superior margin clip (white arrow) prevented reliable margin assessment. (D) Combined histopathology image from two adjacent pathology slides on which the posterior margin (bottom of image) and part of the primary tumor are visible (open arrows). The distance from the posterior margin measured 3 mm microscopically (double arrow). The medial margin is > 5 mm (not present in image). Credit: A. D. Purushotham, M.D., King’s College London, UK

News | Nuclear Imaging | June 20, 2017
June 20, 2017 — Breast-conserving surgery (BCS) is the primary treatment for early-stage...
A 77-year-old male with recurrent lymph node and pulmonary metastases detected by Ga-68 PSMA PET/CT but not by conventional imaging

A 77-year-old male with recurrent lymph node and pulmonary metastases detected by Ga-68 PSMA PET/CT but not by conventional imaging. Graphic courtesy of the Department of Nuclear Medicine, Royal North Shore Hospital, Sydney

News | Prostate Cancer | June 15, 2017
An estimated one in seven American men will be affected by prostate cancer in their lifetime. Prostate-specific...
Dual-labeled PSMA-inhibitors for the diagnosis and therapy of prostate cancer

IMAGE OF THE YEAR: Dual-labeled PSMA-inhibitors for the diagnosis and therapy of prostate cancer. Technology of dual-labeled PSMA-inhibitors for PET/CT imaging and fluorescence-guided intraoperative identification of metastases. This work might help to establish a new treatment regimen for more precise and sensitive pre-, intra- and post-therapeutic detection of prostate cancer.

Credit: Courtesy of A. Baranski, M. Schäfer, U. Bauder-Wüst, M. Roscher, J. Schmidt, E. Stenau, L. Maier-Hein, M. Eder, K. Kopka, German Cancer Research Center, Heidelberg, Germany; T. Simpfendörfer, B. Hadaschik, U. Haberkorn, Heidelberg University Hospital, Heidelberg, Germany; PET-image: Afshar-Oromieh et al., EJNMMI 2013; 40(4); STED-image: J. Matthias, German Cancer Research Center.

This study was supported by the VIP+ fund, Federal Ministry of Education & Research (BMBF), Germany.

Scientific Paper 531: “Preclinical evaluation of dual-labeled PSMA-inhibitors for the diagnosis and therapy of prostate cancer.” A. Baranski, M. Schäfer, U. Bauder-Wüst, M. Roscher, J. Schmidt, E. Stenau, L. Maier-Hein, M. Eder, K. Kopka, German Cancer Research Center (DKFZ), Heidelberg, Germany; T. Simpfendörfer, B.  Hadaschik, U. Haberkorn, University Hospital, Heidelberg, Germany. Presented at SNMMI’s 64th Annual Meeting, June 10-14, 2017, Denver, Colo.

News | Prostate Cancer | June 15, 2017
In the battle against metastatic prostate cancer, the removal of lymph node metastases using image-guided surgery may...
Overlay Init