News | January 28, 2009

MRI with Ultrasound Identifies Breast Cancer Before Metastasis

January 28, 2009 - A combination of MRI and ultrasound is able to measure the metabolism rates of cancer cells, according to research on a new technique developed by researchers at Tel Aviv University.

The MRI-ultrasound technique has been refined for breast cancer identification so that each course of treatment is as individual as the woman being treated. The approach helps determine at an earlier stage than ever before which cells are metastasizing, and how they should be treated.

The MRI-and-ultrasound-imaging application monitors the metabolic changes that occur during cancer metastasis. Increased blood flow (which can be sensed by ultrasound) and an increase of oxygen consumption (measured with an MRI) can indicate cancer metastasis with unprecedented levels of sensitivity.

Normally scientists look for structural changes in the body, such as the presence of a tumor. But with their new methods, clinicains are able to “see” cancer metastasis within a small group of cells long before the cancer spreads to other organs in the body.

“Today, clinicians only diagnose cancer when they see a tumor several millimeters in size. But our diagnosis can be derived from observing only a few cells, and looks specifically at the activation levels of a protein called Met. Activated Met is an oncogen,” said Ilan Tsarfaty, M.D., a lead researcher from TAU’s Sackler Faculty of Medicine. “If the tumor cells show activation of Met, we can design personalized medicine to treat a specific kind of breast cancer.”

The method, expected to start clinical trials in 2010, is currently being researched in Israel hospitals.

“We have developed a non-intrusive way of studying the metabolism of breast cancer in real time,” said Dr. Tsarfaty. “It’s an invaluable tool. By the time results are in from a traditional biopsy, the cancer can already be radically different. But using our technique, we can map the tumor and its borders and determine with high levels of certainty — right away — which patients should be treated aggressively.”

“Current breast cancer treatments are not tailored to individual patients,” Dr. Tsarfaty said. “Our approach to profiling individual tumors will not only help save lives today, it will provide the basic research for developing cancer drugs of the future.”

The research falls in a new field called "translational and personalized medicine.” The new research can be applied to all solid tumors, including those resulting from lung and brain cancer, and could be used to respond to a wide spectrum of neurodegenerative diseases, such as Alzheimer’s, Dr. Tsarfaty reported. Papers describing his methodologies were published recently in the journals Cancer Research and Neoplasia, and the Breast Cancer Research Foundation of America supports his research.

Source: American Friends Tel Aviv University

For more information: www.aftau.org

Related Content

Philips Introduces Technology Maximizer Program for Imaging Equipment Upgrades
Technology | Imaging | January 17, 2018
January 17, 2018 — Philips recently announced the launch of Technology Maximizer, a cross-modality program designed t
Russian Team Developing New Technology to Significantly Reduce MRI Research Costs
News | Magnetic Resonance Imaging (MRI) | January 16, 2018
January 16, 2018 — Researchers from the NUST MISIS Engineering Center for Industrial Technologies in Russia have deve
Transpara Deep Learning Software Matches Experienced Radiologists in Mammogram Reading
News | Computer-Aided Detection Software | January 12, 2018
Deep learning and artificial intelligence improves the efficiency and accuracy of reading mammograms, according to...
Fat Distribution in Women and Men Provides Clues to Heart Attack Risk
News | Women's Health | January 11, 2018
January 11, 2018 – It’s not the amount of fat in your body but where it is stored that may increase your risk for hea
Smartphone Addiction Creates Imbalance in Brain
News | Mobile Devices | January 11, 2018
Researchers have found an imbalance in the brain chemistry of young people addicted to smartphones and the internet,...
Emergency Radiologists See Inner Toll of Opioid Use Disorders

Rates of Imaging Positivity for IV-SUDs Complications. Image courtesy of Efren J. Flores, M.D.

News | Clinical Study | January 11, 2018
January 11, 2018 – Emergency radiologists are seeing a high prevalence of patients with complications related to opio
Study Finds No Evidence that Gadolinium Causes Neurologic Harm

MR images through, A, C, E, basal ganglia and, B, D, F, posterior fossa at level of dentate nucleus. Images are shown for, A, B, control group patient 4, and the, C, D, first and, E, F, last examinations performed in contrast group patient 13. Regions of interest used in quantification of signal intensity are shown as dashed lines for globus pallidus (green), thalamus (blue), dentate nucleus (yellow), and pons (red).

News | Contrast Media | January 11, 2018
January 11, 2018 — There is no evidence that accumulation in the brain of the element gadolinium speeds cognitive dec
Weight Loss Through Exercise Alone Does Not Protect Knees
News | Orthopedic Imaging | January 11, 2018
January 11, 2018 – Obese people who lose a substantial amount of weight can significantly slow down the degeneration
Neurofeedback Shows Promise in Treating Tinnitus

The standard approach to fMRI neurofeedback. Image courtesy of Matthew Sherwood, Ph.D.

News | Magnetic Resonance Imaging (MRI) | January 11, 2018
January 11, 2018 — Researchers using...
Overlay Init