News | March 25, 2015

Study makes strides toward noninvasive diagnostic for increasingly common pediatric liver disease


March 25, 2015 — Researchers at the University of California San Diego School of Medicine have developed a new magnetic resonance imaging (MRI)-based technique to help improve diagnosis of nonalcoholic fatty liver disease (NAFLD) in children. The technique is detailed in a study published Feb. 5 in Hepatology.

Between 5 and 8 million children in the United States have nonalcoholic fatty liver disease (NAFLD), yet most cases go undiagnosed.

"Currently, diagnosis of NAFLD requires a liver biopsy, which is not always available or performed. This leads to both misdiagnosis and missed diagnoses, hampering patient care and progress in clinical research," said Jeffrey B. Schwimmer, M.D., professor of clinical pediatrics at UC San Diego, director of the Fatty Liver Clinic at Rady Children's Hospital-San Diego and the first author of the study. "Thus, a noninvasive method for diagnosing and/or evaluating NAFLD has the potential to impact millions of children."

NAFLD is characterized by large droplets of fat in at least five percent of a child's liver cells. Obesity and diabetes are risk factors for NAFLD. Doctors are concerned about NAFLD in children because it can lead to hepatitis, liver scarring, cirrhosis and liver cancer.

Traditionally, NAFLD is diagnosed by a gastroenterologist in consultation with a pathologist, who examines the patient's biopsied liver tissue under a microscope. The presence and severity of liver fat is graded by the pathologist as none, mild, moderate or severe, based on the percentage of liver cells that contain fat droplets.

In an effort known as the MRI Rosetta Stone Project, Schwimmer and colleagues used a special MRI technique known as magnitude-based MRI, which was previously developed by researchers in the UC San Diego Liver Imaging Group, to estimate liver proton density fat fraction (PDFF), a biomarker of liver fat content.

"Existing techniques for measuring liver fat are dependent upon the individual scanner and the center at which the measurements were made, so they cannot be compared directly," said Claude B. Sirlin, M.D., professor of radiology at UC San Diego and senior author of the study. "By comparison, PDFF is a standardized marker that is reproducible on different scanners and at different imaging centers. Thus, the results of the current study can be generalized to the broader population."

In this study, the researchers compared the new MRI technique to the standard liver biopsy method of assessing fat in the liver. To do this, the team enrolled 174 children who were having liver biopsies for clinical care. For each patient, the team performed both MRI-estimated PDFF and compared the results to the standard pathology method of measuring fat on a liver biopsy.

The team found a strong correlation between the amount of liver fat as measured by the new MRI technique and the grade of liver fat determined by pathology. This is an important step towards being able to use this technology for patients. Notably, the correlation was influenced by both the patient's gender and the amount of scar tissue in the liver. The correlation between the two techniques was strongest in females and in children with minimal scar tissue.

Depending on how the new MRI technology is used, it could correctly classify between 65 and 90 percent of children as having or not having fatty liver tissue.

"Advanced magnitude MRI can be used to estimate PDFF in children, which correlates well with standard analysis of liver biopsies," Schwimmer said. "We are especially excited about the promise of the technology for following children with NAFLD over time. However, further refinements will be needed before this or any other MRI technique can be used to diagnose NAFLD in an individual child."

For more information: www.som.ucsd.edu


Related Content

News | Artificial Intelligence

Nov. 24, 2025 — Siemens Healthineers is launching artificial intelligence-enabled services to help healthcare providers ...

Time November 24, 2025
arrow
News | Artificial Intelligence

Nov. 20, 2025 — Aidoc has announced a collaboration with AdventHealth to launch one of the largest imaging AI ...

Time November 21, 2025
arrow
News | Advanced Visualization

Nov. 20, 2025 — Avatar Medical and Barco have launched Eonis Vision, marking a new evolution in how medical imaging is ...

Time November 20, 2025
arrow
News | Neuro Imaging

Nov. 19, 2025 — Royal Philips has announced an extended partnership with Cortechs.ai. Together, the companies will ...

Time November 19, 2025
arrow
News | Radiology Business

Nov. 13, 2025 — Covera Health recently announced that Advanced Radiology Services (ARS) has joined its national Quality ...

Time November 17, 2025
arrow
News | Radiology Business

Nov. 12, 2025 — Siemens has announced plans to deconsolidate its remaining stake in Siemens Healthineers (currently ...

Time November 13, 2025
arrow
News | Orthopedic Imaging

Nov.10, 2025 — Medical imaging technology company Adaptix Ltd. has received 510(k) clearance from the U.S. Food and Drug ...

Time November 11, 2025
arrow
News | Magnetic Resonance Imaging (MRI)

Nov. 10, 2025 — There has been substantial progress in the past few years in the field of MRI in general and remote MR ...

Time November 11, 2025
arrow
News | Contrast Media

Nov. 10, 2025 — Scientists at the University of Birmingham have developed a new class of MRI contrast agents – improving ...

Time November 10, 2025
arrow
Feature | Teleradiology | Kyle Hardner

Once viewed as a solution for after-hours coverage, teleradiology is rapidly expanding into a critical part of radiology ...

Time November 06, 2025
arrow
Subscribe Now