News | Neuro Imaging | January 04, 2017

MRI Scans Detect 'Brain Rust' in Schizophrenia

New magnetic resonance spectroscopy technique offers better visualization of the biology of schizophrenia and other mental illnesses

brain rust, MRI, schizophrenia, American College of Neuropsychopharmacology, ACNP, Fei Du

January 4, 2017 — A damaging chemical imbalance in the brain may contribute to schizophrenia, according to research presented at the American College of Neuropsychopharmacology Annual Meeting, Dec. 4-8 in Hollywood, Fla.

Using a new kind of magnetic resonance imaging (MRI) measurement, neuroscientists reported higher levels of oxidative stress in patients with schizophrenia, when compared both to healthy individuals and those with bipolar disorder.

"Intensive energy demands on brain cells leads to accumulation of highly reactive oxygen species, such as free radicals and hydrogen peroxide," according to the study's lead investigator, Fei Du, Ph.D., an assistant professor of psychiatry at Harvard Medical School. In schizophrenia, excessive oxidation — which involves the same type of chemical reaction that causes metal to corrode into rust — is widely thought to cause inflammation and cellular damage. However, measuring this process in the living human brain has remained challenging.

Du and colleagues at McLean Hospital measured oxidative stress using a novel magnetic resonance spectroscopy technique. This technique uses MRI scanners to non-invasively measure brain concentrations of two molecules, NAD+ and NADH, that give a readout of how well the brain is able to buffer out excessive oxidants.

Among 21 patients with chronic schizophrenia, Du observed a 53 percent elevation in NADH compared to healthy individuals of similar age. A similar degree of NADH elevation was seen in newly diagnosed schizophrenia, suggesting that oxidation imbalance is present even in the early stages of illness. More modest NADH increases were also seen in bipolar disorder, which shares some genetic and clinical overlap with schizophrenia.

In addition to offering new insights into the biology of schizophrenia, this finding also provides a potential way to test the effectiveness of new interventions. "We hope this work will lead to new strategies to protect the brain from oxidative stress and improve brain function in schizophrenia," Du concludes.

This work was supported by grants from MH092704 (F.D.); NARSAD (F.D.); NARSAD (D.O.); MH094594 (D.O.); MH104449 (D.O.); Shervert Frazier Research Institute (B.M.C.).

For more information: www.acnp.org

Related Content

Technology | Pediatric Imaging | July 21, 2017
The U.S. Food and Drug Administration (FDA) has cleared the first magnetic resonance imaging (MRI) device specifically...
Electronic Brachytherapy Comparable to Mohs Surgery in Early-Stage Non-Melanoma Skin Cancer Treatment
News | Brachytherapy Systems | July 20, 2017
July 20, 2017 — Rates of recurrence in early-stage non-melanoma skin cancer (NMSC) patients were virtually identical
3-D Vascular Ultrasound Quantifies Plaque Burden to Estimate Cardiovascular Risk
News | Cardiovascular Ultrasound | July 20, 2017
In a large, first-of-its-kind population, researchers found an experimental technique known as three-dimensional...
Synergy Radiology Associates Employs UroNav Fusion Biopsy System for Better Prostate Cancer Diagnosis
News | Biopsy Systems | July 17, 2017
Radiologists from Synergy Radiology Associates (SRA) in Houston are using the power of 3-D medical imaging and...
Low Doses of Radiation Could Harm Cardiovascular Health
News | Radiation Dose Management | July 17, 2017
Ionizing radiation, such as X-rays, has a harmful effect on the cardiovascular system even at doses equivalent to...
PET/CT Tracer Identifies Vulnerable Lesions in Non-Small Cell Lung Cancer Patients

Example of a patient with an upper left lung NSCLC: A: FDG; B: FDG PET/CT; C: Planning radiotherapy based on FDG (66Gy) with BTVm (GTV), CTV and PTV; D: PET FMISO E: FMISO PET/CT; F: boost based on the FMISO PET (76Gy) with BTVh (biological hypoxic target volume) and PTV boost. Credit: QuantIF – LITIS EA 4108 – FR CNRS 3638, Henri Becquerel Cancer Center, Rouen, France

News | PET-CT | July 14, 2017
July 14, 2017 — Fluorine-18 (18F)-fluoromisonidazole (FMISO) is a positron emission tomography (PET)...
News | Image Guided Radiation Therapy (IGRT) | July 13, 2017
Elekta and Sunnybrook Health Sciences Centre have initiated installation of Elekta’s MR-linac, an investigational...
Insurance Coverage for CT Colonography Increases Likelihood of Screening
News | Colonoscopy Systems | July 12, 2017
People with insurance policies that cover computed tomography (CT) colonography for colorectal cancer screening are...
Researchers Identify Visual System Changes that May Signal Parkinson's Disease
News | Neuro Imaging | July 11, 2017
Changes in the visual systems of newly diagnosed Parkinson’s disease patients may provide important biomarkers for the...
New Study Uses MRI to Probe Psychopathic Brains
News | Neuro Imaging | July 07, 2017
Josh Buckholtz, Ph.D., associate professor of psychology at Harvard University, is the senior author of a study that...
Overlay Init