News | Neuro Imaging | January 04, 2017

New magnetic resonance spectroscopy technique offers better visualization of the biology of schizophrenia and other mental illnesses

brain rust, MRI, schizophrenia, American College of Neuropsychopharmacology, ACNP, Fei Du

January 4, 2017 — A damaging chemical imbalance in the brain may contribute to schizophrenia, according to research presented at the American College of Neuropsychopharmacology Annual Meeting, Dec. 4-8 in Hollywood, Fla.

Using a new kind of magnetic resonance imaging (MRI) measurement, neuroscientists reported higher levels of oxidative stress in patients with schizophrenia, when compared both to healthy individuals and those with bipolar disorder.

"Intensive energy demands on brain cells leads to accumulation of highly reactive oxygen species, such as free radicals and hydrogen peroxide," according to the study's lead investigator, Fei Du, Ph.D., an assistant professor of psychiatry at Harvard Medical School. In schizophrenia, excessive oxidation — which involves the same type of chemical reaction that causes metal to corrode into rust — is widely thought to cause inflammation and cellular damage. However, measuring this process in the living human brain has remained challenging.

Du and colleagues at McLean Hospital measured oxidative stress using a novel magnetic resonance spectroscopy technique. This technique uses MRI scanners to non-invasively measure brain concentrations of two molecules, NAD+ and NADH, that give a readout of how well the brain is able to buffer out excessive oxidants.

Among 21 patients with chronic schizophrenia, Du observed a 53 percent elevation in NADH compared to healthy individuals of similar age. A similar degree of NADH elevation was seen in newly diagnosed schizophrenia, suggesting that oxidation imbalance is present even in the early stages of illness. More modest NADH increases were also seen in bipolar disorder, which shares some genetic and clinical overlap with schizophrenia.

In addition to offering new insights into the biology of schizophrenia, this finding also provides a potential way to test the effectiveness of new interventions. "We hope this work will lead to new strategies to protect the brain from oxidative stress and improve brain function in schizophrenia," Du concludes.

This work was supported by grants from MH092704 (F.D.); NARSAD (F.D.); NARSAD (D.O.); MH094594 (D.O.); MH104449 (D.O.); Shervert Frazier Research Institute (B.M.C.).

For more information: www.acnp.org


Related Content

News | Radiology Imaging

Feb. 12, 2026 — Siemens Healthineers and Mayo Clinic are expanding their strategic collaboration to enhance patient care ...

Time February 13, 2026
arrow
News | ARRS

Feb. 11, 2026 —The American Roentgen Ray Society (ARRS) has announced the following radiologists, as well as their ...

Time February 13, 2026
arrow
News | Magnetic Resonance Imaging (MRI)

Feb. 6, 2026 — A state-of-the-art intraoperative MRI (iMRI) has arrived at the University of Chicago Medicine, one of ...

Time February 06, 2026
arrow
News | Magnetic Resonance Imaging (MRI)

Jan. 27, 2026 — Hyperfine has announced results from the largest data set to date evaluating stroke detection with its ...

Time January 28, 2026
arrow
News | Radiology Education

Jan. 22, 2026—The American Roentgen Ray Society (ARRS) will host a live virtual symposium, "Medical Imaging for ...

Time January 28, 2026
arrow
News | Radiology Imaging

Jan.26, 2026 — SimonMed Imaging has unveiled an updated brand and the launch of SimonMed Longevity, a new division ...

Time January 27, 2026
arrow
News | PET Imaging

Jan. 26, 2026 — Nuclidium, a clinical-stage radiopharmaceutical company developing a proprietary copper-based ...

Time January 27, 2026
arrow
News | Magnetic Resonance Imaging (MRI)

Jan. 20, 2026 — Hyperfine, the developer of the first FDA-cleared AI-powered portable MRI system for the brain — the ...

Time January 20, 2026
arrow
News | Stroke

Dec. 12, 2025 — Hyperfine, Inc. has announced that it has received FDA clearance for a new multi-direction diffusion ...

Time December 15, 2025
arrow
News | Artificial Intelligence

Dec. 1, 2025 — Researchers at the University of California, Berkeley and University of California, San Francisco have ...

Time December 10, 2025
arrow
Subscribe Now