News | Magnetic Resonance Imaging (MRI) | May 17, 2017

MRI Offers New Insights Into Tumor Metabolism

German study finds MRI with a new biosensor shows pH value changes

MRI Offers New Insights Into Tumor Metabolism

May 17, 2017 — Tumors, inflammation and circulatory disorders locally disturb the body's acid-base balance. These changes in pH value could be used for example to verify the success of cancer treatments. Up to now, however, there has been no imaging method to render such changes visible in patients. Now a team from the Technical University of Munich (TUM) has developed a pH sensor that renders pH values visible through magnetic resonance imaging (MRI) – in a non-invasive, radiation-free manner.

Four years ago, during a magnetic resonance experiment with tumor cells, TUM physicist Franz Schilling, Ph.D., found signals from a molecule that was highly sensitive towards pH changes. The molecule, which was identified as zymonic acid in subsequent investigations, could play an important role in the future of medical imaging. As a biosensor for pH values, it could provide insights into the body which had been impossible in the past.

"An appropriate pH imaging method would make it possible to visualize abnormal changes in tissue and specifically metabolic processes of tumors," explained Schilling. Areas surrounding tumors and inflammations are usually slightly more acidic than areas surrounding healthy tissue, a phenomenon possibly linked to the aggressiveness of tumors. Schilling sees further potential uses in treatment prognoses. "pH values are also interesting when it comes to evaluating the efficacy of tumor treatments. Even before a successfully treated tumor starts to shrink, its metabolism and thus the pH value of the surrounding area could change. An appropriate pH imaging method would indicate at a much earlier stage whether or not the right approach has been selected," he said

Schilling is now director of the working group for Preclinical Imaging and Medical Physics at the Clinic and Polyclinic for Nuclear Medicine in the TUM Klinikum rechts der Isar. In past years, he has joined together with colleagues from the departments of physics, chemistry and medicine to research zymonic acid as a biosensor. In the journal Nature Communications, the team describes how it can be used to reliably represent pH values in the bodies of small animals.

In order to make pH values visible using zymonic acid, the molecule is injected into the body and then an MRI investigation is made of the object tissue. In a strong magnetic field, radiowaves excite the nuclear spins of the zymonic acid to oscillation. The reactions of the nuclei are then recorded. This data is used to calculate frequency spectra that in turn provide information about the chemical properties of the molecular surroundings of the nuclei. Ultimately, the pH value at any examined location in the tissue can be represented based on pH-dependent molecular changes in the zymonic acid.

Zymonic acid has to be marked with carbon-13 in order to be visible in MRI images. This means that the molecules contain carbon-13 atoms (13C) instead of "normal" carbon 12 atoms. But zymonic acid marked in this manner is still not measurable; its MRI signal is too weak. "We therefore use a relatively new method, hyperpolarization," explained Stephan Düwel, physicist and first author of the study. "We use a special device to transfer the polarization of electrons to the 13C atomic nuclei using microwaves at very low temperatures, which results in an MRI signal up to 100,000 times stronger." A hot liquid is then used to quickly return the zymonic acid to room temperature.

After this, the scientists need to act quickly. The biosensor is injected intravenously into the organism, then the MRI scan has to be made immediately: It only takes 60 seconds for the signal-amplifying effect of the hyperpolarization to wear off again. "We're currently working on expanding this time window," said Düwel.

"On the one hand, we're trying to improve the MRI properties of zymonic acid with appropriate modifications to the molecule; On the other hand, we're looking for other pH-sensitive molecules," explained biochemist Christian Hundshammer, second author of the study.

Schilling and his team have succeeded in showing that their method is sensitive enough to represent medically relevant pH value changes in the organism. Using zymonic acid it is furthermore possible to specifically investigate the pH value outside of the cell membrane: With other biosensors it is often not clear whether measured changes take place inside or outside of the cell (intracellular or extracellular). This is important because the intracellular value is usually stable, while changes in metabolism have a much greater impact on the extracellular value.

In contrast to optical methods, which are limited to superficial penetration into the body because of the low transparency of tissue, there are no limitations to the depth of penetration for MRI. It has furthermore been demonstrated that zymonic acid is not toxic in the concentrations used with small animals and is also created in low concentrations as a by-product of the metabolite pyruvic acid which is present in the body.

"We believe zymonic acid is a highly promising biosensor for patient applications," said Schilling. For the time being, however, additional pre-clinical studies are planned in order to ascertain the advantages of this new imaging biomarker compared to conventional methods and to further improve the spatial resolution of pH imaging.

The research project was funded by the Collaborative Research Centre 824 (SFB824) “Imaging for Selection, Monitoring and Individualization of Cancer Therapies” led by Prof. Markus Schwaiger.

For more information: www.nature.com/ncomms

Related Content

Turkish Hospital Begins MR-Guided Radiation Therapy With Viewray MRIdian Linac
News | Image Guided Radiation Therapy (IGRT) | September 21, 2018
ViewRay Inc. announced that Acibadem Maslak Hospital in Istanbul, Turkey has begun treating patients with ViewRay's...
Machine Learning IDs Markers to Help Predict Alzheimer's

Neurologists use structural and diffusion magnetic resonance imaging (MRI) to identify changes in brain tissue (both gray and white matter) that are characteristic of Alzheimer's disease and other forms of dementia. The MRI images are analyzed using morphometry and tractography techniques, which detect changes in the shape and dimensions of the brain and in the tissue microstructure, respectively. In this example, the images show the normal brain of an elderly patient. Image courtesy of Jiook Cha.

News | Neuro Imaging | September 20, 2018
New research has shown a combination of two different modes of magnetic resonance imaging (MRI), computer-based...
Ingenia Ambition X 1.5T MR. This innovation is the latest advance in the Ingenia MRI portfolio, which comprises fully-digital MRI systems, healthcare informatics and a range of maintenance and life cycle services for integrated solutions that empower a faster, smarter, and simpler path to enabling a confident diagnosis
News | Magnetic Resonance Imaging (MRI) | September 14, 2018
Philips, a global leader in health technology, launched the Ingenia Ambition X 1.5T MR.
Veye Chest version 2
News | Lung Cancer | September 11, 2018
Aidence, an Amsterdam-based medical AI company, announced that Veye Chest version 2, a class IIa medical device, has
Sponsored Content | Case Study | Magnetic Resonance Imaging (MRI) | September 07, 2018 | By Sabine Sartoretti, M.D.
As soon as the Compressed SENSE technology became available to the MRI team at Kantonsspital Winterthur (Switzerland),...

Image courtesy of Philips Healthcare

Feature | Magnetic Resonance Imaging (MRI) | September 06, 2018 | By Melinda Taschetta-Millane
According to the Prescient & Strategic Intelligence report, “Global Magnetic Resonance Imaging (MRI) Market Size,...
Brain Iron Levels May Predict Multiple Sclerosis Disabilities
News | Neuro Imaging | August 31, 2018
A new, highly accurate magnetic resonance imaging (MRI) technique can monitor iron levels in the brains of multiple...
Study Finds Multiple Sclerosis Drug Slows Brain Shrinkage

An NIH-funded clinical trial suggested that the anti-inflammatory drug ibudilast may slow brain shrinkage caused by progressive MS. Image courtesy of Robert J. Fox, M.D., Cleveland Clinic.

News | Neuro Imaging | August 30, 2018
August 30, 2018 — Results from a clinical...
Rapid Cardiac MRI Technique May Cut Costs, Boost Care in Developing World
News | Magnetic Resonance Imaging (MRI) | August 29, 2018
A newly developed rapid imaging protocol quickly and cheaply diagnosed heart ailments in patients in Peru, according to...
iSchemaView RAPID Technology Now Installed in More Than 500 Stroke Centers
News | Neuro Imaging | August 27, 2018
iSchemaView announced that more than 575 stroke centers in 22 countries have selected the RAPID advanced imaging...