News | January 02, 2014

MRI Method for Measuring Multiple Sclerosis Progression Validated

January 2, 2014 — Imaging research from Western University, London, Canada, has demonstrated that a magnetic resonance imaging (MRI) approach called quantitative susceptibility mapping (QSM) can be an important tool for diagnosing and tracking the progression of multiple sclerosis (MS) and other neurological diseases. QSM allows quantitative measurement of myelin content and iron deposition in the brain. Ravi Menon, Ph.D., Western's Robarts Research Institute, Western University, led the research, which is published in Proceedings of the National Academy of Sciences (PNAS).
 
Menon and his associates, including David Rudko, Ph.D., first author, set out to determine whether QSM was indeed quantitative. Interpretation of QSM data requires the use of a model of the underlying tissue structure. The scientists found that the most common approach to creating QSM images was insufficient to generate quantitative images — images in which myelin content and iron can be measured. They demonstrated this by exploring the orientation dependence of the MRI signal. This particular signal has generally thought to be a constant, but the team showed that it depends on tissue orientation in both cortical grey and white matter, but not in the deep brain structures such as the basal ganglia. All these areas are implicated in MS.
 
They demonstrated the discordance between the models for QSM using a device that rotated a rat's brain, so that it could be scanned from 18 different angles, using a 9.4-T MRI. The brains were then sent to histology for comparison. They found the values depended on the microstructure of the brain such as myelin concentration and integrity, as well as iron deposition. The study also showed, for the first time, the correlation between MRI measurement and histology measurement when the correct model was used.
 
"With this methodology, we now have a quantitative way to interpret myelin and iron concentrations, and in particular, any changes to them over time," said Menon, who holds a Canada Research Chair in Functional Magnetic Resonance Imaging. "We've been doing these scans on MS patients for a while, but nobody knew if it was a valid approach or not. We now know how to interpret the data. It allows us to separate changes in white matter degeneration from other changes such as iron deposition, which in conventional imaging all looks the same."
 
Menon says the next step is to use this new imaging approach to study the changes that occur in MS and find out if it is predictive of disease progression.
 
For more information: cfmm.robarts.ca, www.pnas.org

Related Content

Brain Imaging Predicts Language Learning in Deaf Children
News | Magnetic Resonance Imaging (MRI) | January 23, 2018
January 23, 2018 – In a new international collaborative...
Imricor Announces Enrollment Completion for Clinical Study on Vision-MR Ablation Catheter
News | Interventional Radiology | January 23, 2018
January 23, 2018 – Imricor Medical Systems announced completion of enrollment for the...
Philips Introduces Technology Maximizer Program for Imaging Equipment Upgrades
Technology | Imaging | January 17, 2018
January 17, 2018 — Philips recently announced the launch of Technology Maximizer, a cross-modality program designed t
Russian Team Developing New Technology to Significantly Reduce MRI Research Costs
News | Magnetic Resonance Imaging (MRI) | January 16, 2018
January 16, 2018 — Researchers from the NUST MISIS Engineering Center for Industrial Technologies in Russia have deve
Transpara Deep Learning Software Matches Experienced Radiologists in Mammogram Reading
News | Computer-Aided Detection Software | January 12, 2018
Deep learning and artificial intelligence improves the efficiency and accuracy of reading mammograms, according to...
Fat Distribution in Women and Men Provides Clues to Heart Attack Risk
News | Women's Health | January 11, 2018
January 11, 2018 – It’s not the amount of fat in your body but where it is stored that may increase your risk for hea
Smartphone Addiction Creates Imbalance in Brain
News | Mobile Devices | January 11, 2018
Researchers have found an imbalance in the brain chemistry of young people addicted to smartphones and the internet,...
Emergency Radiologists See Inner Toll of Opioid Use Disorders

Rates of Imaging Positivity for IV-SUDs Complications. Image courtesy of Efren J. Flores, M.D.

News | Clinical Study | January 11, 2018
January 11, 2018 – Emergency radiologists are seeing a high prevalence of patients with complications related to opio
Minimally Invasive Treatment Provides Relief from Back Pain

Lumbar spine MRI showing disc herniation and nerve root at baseline and one month after treatment

News | Interventional Radiology | January 11, 2018
The majority of patients were pain free after receiving a new image-guided pulsed radiofrequency treatment for low back...
Study Finds No Evidence that Gadolinium Causes Neurologic Harm

MR images through, A, C, E, basal ganglia and, B, D, F, posterior fossa at level of dentate nucleus. Images are shown for, A, B, control group patient 4, and the, C, D, first and, E, F, last examinations performed in contrast group patient 13. Regions of interest used in quantification of signal intensity are shown as dashed lines for globus pallidus (green), thalamus (blue), dentate nucleus (yellow), and pons (red).

News | Contrast Media | January 11, 2018
January 11, 2018 — There is no evidence that accumulation in the brain of the element gadolinium speeds cognitive dec
Overlay Init