News | January 02, 2014

MRI Method for Measuring Multiple Sclerosis Progression Validated

January 2, 2014 — Imaging research from Western University, London, Canada, has demonstrated that a magnetic resonance imaging (MRI) approach called quantitative susceptibility mapping (QSM) can be an important tool for diagnosing and tracking the progression of multiple sclerosis (MS) and other neurological diseases. QSM allows quantitative measurement of myelin content and iron deposition in the brain. Ravi Menon, Ph.D., Western's Robarts Research Institute, Western University, led the research, which is published in Proceedings of the National Academy of Sciences (PNAS).
 
Menon and his associates, including David Rudko, Ph.D., first author, set out to determine whether QSM was indeed quantitative. Interpretation of QSM data requires the use of a model of the underlying tissue structure. The scientists found that the most common approach to creating QSM images was insufficient to generate quantitative images — images in which myelin content and iron can be measured. They demonstrated this by exploring the orientation dependence of the MRI signal. This particular signal has generally thought to be a constant, but the team showed that it depends on tissue orientation in both cortical grey and white matter, but not in the deep brain structures such as the basal ganglia. All these areas are implicated in MS.
 
They demonstrated the discordance between the models for QSM using a device that rotated a rat's brain, so that it could be scanned from 18 different angles, using a 9.4-T MRI. The brains were then sent to histology for comparison. They found the values depended on the microstructure of the brain such as myelin concentration and integrity, as well as iron deposition. The study also showed, for the first time, the correlation between MRI measurement and histology measurement when the correct model was used.
 
"With this methodology, we now have a quantitative way to interpret myelin and iron concentrations, and in particular, any changes to them over time," said Menon, who holds a Canada Research Chair in Functional Magnetic Resonance Imaging. "We've been doing these scans on MS patients for a while, but nobody knew if it was a valid approach or not. We now know how to interpret the data. It allows us to separate changes in white matter degeneration from other changes such as iron deposition, which in conventional imaging all looks the same."
 
Menon says the next step is to use this new imaging approach to study the changes that occur in MS and find out if it is predictive of disease progression.
 
For more information: cfmm.robarts.ca, www.pnas.org

Related Content

Philips Launches IntelliSpace Discovery Research Platform at RSNA
Technology | Artificial Intelligence | November 20, 2018
Ahead of the 2018 Radiological Society of North America Annual Meeting (RSNA), Nov. 25-30 in Chicago, Royal Philips...
Bay Labs and Northwestern Medicine Enroll First Patient in AI Echocardiography Study
News | Cardiovascular Ultrasound | November 19, 2018
Medical artificial intelligence (AI) company Bay Labs and Northwestern Medicine announced that the first patient has...
Immune Inflammatory Levels Linked to Disease-Free Survival in Prostate Cancer
News | Prostate Cancer | November 19, 2018
Data from a validation study of a high-risk prostate cancer trial suggests that higher levels of pretreatment...
Canon Medical Receives FDA Clearance for Vantage Orian 1.5T MRI
Technology | Magnetic Resonance Imaging (MRI) | November 15, 2018
Canon Medical Systems USA Inc. received 510(k) clearance from the U.S. Food and Drug Administration (FDA) on its new...
Life Image and Mendel.ai Bringing Artificial Intelligence to Clinical Trial Development
News | Artificial Intelligence | November 15, 2018
Life Image and Mendel.ai announced a new strategic partnership that will facilitate the adoption and enhancement of...
Artificial Intelligence Predicts Alzheimer's Years Before Diagnosis
News | Neuro Imaging | November 14, 2018
Artificial intelligence (AI) technology improves the ability of brain imaging to predict Alzheimer’s disease, according...
Researchers Awarded 2018 Canon Medical Systems USA/RSNA Research Grants
News | Radiology Imaging | November 13, 2018
The Radiological Society of North America (RSNA) Research & Education (R&E) Foundation recently announced the...
Subtle Medical Showcases Artificial Intelligence for PET, MRI Scans at RSNA 2018
News | Artificial Intelligence | November 13, 2018
At the 2018 Radiological Society of North America annual meeting (RSNA 2018), Nov. 25-30 in Chicago, Subtle Medical...
This is the Siemens Magnetom Sola RT edition 1.5T MRI system optimized for radiation therapy displayed for the first time since gaining FDA clearance in 2018. It was displayed at the American Society for Radiotherapy and Oncology (ASTRO) 2018 annual meeting. Read more about this system at ASTRO 2018. #ASTRO18 #ASTRO2018
360 Photos | 360 View Photos | November 07, 2018
This is the Siemens Magnetom Sola RT edition 1.5T MRI system optimized for...