News | Breast Imaging | June 08, 2016

MRI Links Saturated Fats to Breast Cancer in Postmenopausal Women

Assessing fat composition may lead to better understanding of breast cancer development mechanisms

MRI, saturated fat, breast cancer, postmenopausal women, NYU Langone study

June 8, 2016 — The presence of high saturated fatty acids in breast tissue may be a useful indicator of cancer in postmenopausal women, according to a new study by researchers at NYU Langone Medical Center. The study was published online in Radiology, a journal of the Radiological Society of North America.

Specifically, the researchers used a new technique developed in NYU Langone’s Department of Radiology that helps identify the relationship between fatty acids and breast cancer. These findings, they say, may one day lead to greater understanding of the underlying mechanisms behind breast cancer development and the role of fat as a factor in breast cancer diagnosis and progression.

“Our study offers the first evidence — seen in breast tissue — that high saturated fatty acids in the breast adipose tissue is associated with presence of breast cancer in postmenopausal women,” said senior author and investigator Sungheon G. Kim, Ph.D., associate professor in the Department of Radiology at NYU Langone and a researcher at the Center for Advanced Imaging, Innovation and Research.

The relationship between body mass index (BMI), fat and cancer development has previously been studied, with postmenopausal women found to be at increased risk for breast cancer as their BMI increases. However, this study suggests the composition of the fat itself may play a role as well.

In order to measure fat composition, the NYU Langone radiology research team developed a new approach to magnetic resonance (MR) spectroscopic imaging — a type of MRI that provides information on the chemical composition of the tissue. Kim and colleagues devised a novel method called gradient-echo spectroscopic imaging that provides information on various types of fatty acids based on a series of three-dimensional MRI images acquired for five minutes.

“There is a clear need for methods that can accurately measure fat composition of the breast tissue within a short scan time, and our study takes a first step towards meeting this critical gap,” said Kim.

In this study, researchers analyzed imaging sequences from a total of 89 women who were, on average, approximately 48 years old. Fifty-eight women were pre-menopausal and 31 women were post-menopausal. Each patient’s height, weight and BMI were recorded.

All women received an additional five-minute scan of three-dimensional multiple gradient echo sequences at the end of their diagnostic MRI exams. Forty-nine patients had benign breast tissue, 12 had ductal carcinoma and 28 had invasive ductal carcinoma.

Compared to the benign breast tissue of postmenopausal women, results showed that the breast tissue in postmenopausal women with invasive ductal carcinoma was comprised of a higher percentage of saturated fatty acids and a lower percentage of monounsaturated fatty acids. These findings suggest high-saturated fatty acids and low monounsaturated fatty acids may be associated with invasive cancer, according to the study’s authors.

Of the women with benign lesions, postmenopausal women exhibited higher polyunsaturated fatty acids and lower saturated fatty acids than the premenopausal women.

No significant correlation was found between BMI and fatty acids in breast tissue, suggesting that data regarding the composition of fats could be more indicative of breast cancer.

Because the population screened in this study was considered a high-risk group, and they were scheduled for high-risk screening follow-up, or suspicion of cancer, more research is needed to determine the role of fat composition in low-risk postmenopausal women, the authors say. They also point out that further research also is needed to determine how these fats, which are created in the body and are not correlated with dietary intake, may influence cancer development.

“Measuring breast fat composition only takes an extra five minutes, making this practical, new technique something that could easily be implemented in a clinical setting,” said study co-author Linda Moy, M.D., an associate professor in the Department of Radiology at NYU Langone and a member of its Laura and Isaac Perlmutter Cancer Center. “With further research, we could potentially use these findings to change how we look at breast cancer imaging.”

Funding support for the study, which took fourteen months to complete, was provided by NIH grant R01-CA160620.

Besides Kim and Moy, other NYU Langone researchers involved in this research study at the time were co-investigators Melanie Freed, Ph.D.; Pippa Storey, Ph.D.; Alana Amarosa Lewin, M.D.; Jim Babb, Ph.D.; and Melanie Moccaldi, RT.

For more information: www.pubs.rsna.org/journal/radiology

Related Content

Turkish Hospital Begins MR-Guided Radiation Therapy With Viewray MRIdian Linac
News | Image Guided Radiation Therapy (IGRT) | September 21, 2018
ViewRay Inc. announced that Acibadem Maslak Hospital in Istanbul, Turkey has begun treating patients with ViewRay's...
Machine Learning IDs Markers to Help Predict Alzheimer's

Neurologists use structural and diffusion magnetic resonance imaging (MRI) to identify changes in brain tissue (both gray and white matter) that are characteristic of Alzheimer's disease and other forms of dementia. The MRI images are analyzed using morphometry and tractography techniques, which detect changes in the shape and dimensions of the brain and in the tissue microstructure, respectively. In this example, the images show the normal brain of an elderly patient. Image courtesy of Jiook Cha.

News | Neuro Imaging | September 20, 2018
New research has shown a combination of two different modes of magnetic resonance imaging (MRI), computer-based...
SmartCurve technology, a revolutionary breast imaging technology designed specifically for the curvature of the female breast to provide every woman with a more comfortable and accurate mammogram.
News | Mammography | September 14, 2018
Solis Mammography declared September Breast Wellness Month a
Ingenia Ambition X 1.5T MR. This innovation is the latest advance in the Ingenia MRI portfolio, which comprises fully-digital MRI systems, healthcare informatics and a range of maintenance and life cycle services for integrated solutions that empower a faster, smarter, and simpler path to enabling a confident diagnosis
News | Magnetic Resonance Imaging (MRI) | September 14, 2018
Philips, a global leader in health technology, launched the Ingenia Ambition X 1.5T MR.
breast screening
News | Clinical Trials | September 13, 2018
Fewer and fewer women die from breast cancer in recent years but, surprisingly, the decline is just as large in the a
Lightvision near-infrared fluorescence imaging system
News | Women's Health | September 11, 2018
Shimadzu Corp.
Veye Chest version 2
News | Lung Cancer | September 11, 2018
Aidence, an Amsterdam-based medical AI company, announced that Veye Chest version 2, a class IIa medical device, has
Feature | Breast Imaging | September 07, 2018 | By JoAnn Pushkin
If you are confused about the conflicting advice surrounding mammography screening guidelines, welcome to the club.
Sponsored Content | Case Study | Magnetic Resonance Imaging (MRI) | September 07, 2018 | By Sabine Sartoretti, M.D.
As soon as the Compressed SENSE technology became available to the MRI team at Kantonsspital Winterthur (Switzerland),...