News | Magnetic Resonance Imaging (MRI) | January 26, 2021

MRI Helps Unravel the Mysteries of Sleep

Most research on sleep is conducted using electroencephalography (EEG), a method that entails measuring brain activity through electrodes placed along a patient's scalp. However, Anjali Tarun, a doctoral assistant at EPFL's Medical Image Processing Laboratory within the School of Engineering, decided to investigate brain activity during sleep using magnetic resonance imaging, or MRI.

Getty Images

January 26, 2021 — Our state of consciousness changes significantly during stages of deep sleep, just as it does in a coma or under general anesthesia. Scientists have long believed - but couldn't be certain - that brain activity declines when we sleep. Most research on sleep is conducted using electroencephalography (EEG), a method that entails measuring brain activity through electrodes placed along a patient's scalp. However, Anjali Tarun, a doctoral assistant at EPFL's Medical Image Processing Laboratory within the School of Engineering, decided to investigate brain activity during sleep using magnetic resonance imaging, or MRI. According to Dimitri Van De Ville, who heads the lab, "MRI scans measure neural activity by detecting the hemodynamic response of structures throughout the brain, thereby providing important information in addition to EEGs." During these experiments, Tarun relied upon EEG to identify when the study participants had fallen asleep and pinpoint the different stages of sleep. Then she examined the MRI images to generate spatial maps of neural activity and determine different brain states.

Difficult data to obtain

The only catch was that it wasn't easy to perform brain MRIs on participants while they were sleeping. The machines are very noisy, making it hard for participants to reach a state of deep sleep. But working with Prof. Sophie Schwartz at the University of Geneva and Prof. Nikolai Axmacher at Ruhr-Universität Bochum, Tarun could leverage simultaneous MRI and EEG data from around thirty people. The brain-activity data were covered a period of nearly two hours while participants were sleeping in an MRI machine. "Two hours is a relatively long time, meaning we were able to obtain a set of rare, reliable data," says Tarun. "MRIs carried out while a patient is performing a cognitive task usually last around 10-30 minutes."

Brain activity during sleep

After checking, analyzing and comparing all the data, what Tarun found was surprising. "We calculated exactly how many times networks made up of different parts of the brain became active during each stage of sleep," she says. "We discovered that during light stages of sleep - that is, between when you fall asleep and when you enter a state of deep sleep - overall brain activity decreases. But communication among different parts of the brain becomes much more dynamic. We think that's due to the instability of brain states during this phase." Van De Ville adds: "What really surprised us in all this was the resulting paradox. During the transition phase from light to deep sleep, local brain activity increased and mutual interaction decreased. This indicates the inability of brain networks to synchronize."

The role of default-mode networks and the cerebellum

Consciousness is generally associated with neural networks that may be linked to our introspection processes, episodic memory and spontaneous thought. "We saw that the network between the anterior and posterior regions broke down, and this became increasingly pronounced with increasing sleep depth," says Van De Ville. "A similar breakdown in neural networks was also observed in the cerebellum, which is typically associated with motor control." For now, the scientists don't know exactly why this happens. But their findings are a first step towards a better understanding of our state of consciousness while we sleep. "Our findings show that consciousness is the result of interactions between different brain regions, and not in localized brain activity," says Tarun. "By studying how our state of consciousness is altered during different stages of sleep, and what that means in terms of brain network activity, we can better understand and account for the wide range of brain functions that characterize us as human beings."

For more information: https://www.epfl.ch/en/

Related Content

The prevalence of genetic mutations associated with breast cancer in Black and white women is the same, according to a new JAMA Oncology study of nearly 30,000 patients led by researchers in the Basser Center for BRCA at the Abramson Cancer Center.

Getty Images

News | Women's Health | June 15, 2021
June 15, 2021 — The prevalence of genetic mutations associated with breast cancer in Black and white women is the sam
A cardiac MRI of athletes who had COVID-19 is seven times more effective in detecting inflammation of the heart than symptom-based testing, according to a study led by researchers at The Ohio State University Wexner Medical Center and College of Medicine with 12 other Big Ten programs.

Cardiac Magnetic Resonance Imaging in Athletes With Clinical and Subclinical Myocarditis A-D, Athlete A with subclinical possible myocarditis was asymptomatic with normal electrocardiogram (ECG), echocardiogram, and high-sensitivity troponin findings. A, T2 mapping showing elevated T2 in basal-mid inferolateral wall in short axis view. B, late gadolinium enhancement (LGE) in the basal inferolateral wall in short axis view. C, Postcontrast steady state-free precession (SSFP) images showing contrast uptake in the basal-mid inferolateral wall in short axis view. D, LGE in the inferolateral wall in 3-chamber view. E-H, Athlete B with subclinical probable myocarditis was asymptomatic with normal ECG, normal echocardiogram, and elevated high-sensitivity troponin findings. E, T2 mapping showing elevated T2 in the anteroseptal wall in short axis view. F, LGE in the anteroseptal wall in 3-chamber view. G, T2 mapping showing elevated T2 in the anteroseptal wall in 3-chamber view. F, Postcontrast SSFP image showing pericardial effusion in short axis view. I-K, Athlete C with clinical myocarditis and chest pain, dyspnea, abnormal ECG, normal echocardiogram, and normal troponin findings. I, T2 mapping showing elevated T2 in the lateral wall short axis view. J, Postcontrast SSFP images showing contrast uptake in midlateral wall in short axis view. K, LGE in the epicardial midlateral wall in short axis view. L-N, Athlete D with clinical myocarditis, chest pain, abnormal ECG, echocardiogram, and troponin findings. L, T1 mapping showing elevated native T1 in midlateral wall in short axis view. M, T2 mapping showing elevated T2 in the midlateral wall in short axis view. N, LGE in the epicardial midlateral wall in short axis view. IR indicates inferior right view; IRP, inferior, right, posterior view; PLI, posterior, left, inferior view; SL, superior left view; SLA, superior, left, anterior view. Image courtesy of JAMA Cardiol. Published online May 27, 2021. doi:10.1001/jamacardio.2021.2065

News | Cardiac Imaging | June 15, 2021
June 15, 2021 — A...
Rensselaer algorithm can identify risk of cardiovascular disease using lung cancer scan #CT
News | Computed Tomography (CT) | June 14, 2021
June 14, 2021 — Heart disease and cancer are the ...
A new imaging technique has the potential to detect neurological disorders — such as Alzheimer's disease — at their earliest stages, enabling physicians to diagnose and treat patients more quickly. Termed super-resolution, the imaging methodology combines position emission tomography (PET) with an external motion tracking device to create highly detailed images of the brain.

Result of the Hoffman brain phantom study. Top row: same PET slice reconstructed with A) 2mm static OSEM, B) 1mm static OSEM, C) proposed SR method and D) corresponding CT slice (note that the CT image can be treated as a high-resolution reference). Middle row: zoom on region of interest for corresponding images. Bottom row: Line profiles for corresponding data. Image created by Y Chemli, et al., Gordon Center for Medical Imaging: Department of Radiology Massachusetts General Hospital, Harvard Medical School, Boston, MA.

News | PET Imaging | June 14, 2021
June 14, 2021 — A new imaging technique has the potential to detect neurological disorders — such as...
Prediction performance of DL compared to quantitative measures and Kaplan-Meier curves for quartiles of DL. Image created by Singh et al., Cedars-Sinai Medical Center, Los Angeles, CA.

Prediction performance of DL compared to quantitative measures and Kaplan-Meier curves for quartiles of DL. Image created by Singh et al., Cedars-Sinai Medical Center, Los Angeles, CA.

News | SPECT Imaging | June 14, 2021
June 14, 2021 — An advanced artificial i...
Accuray Incorporated announced the company has received CE Mark certification for its ClearRT helical fan-beam kVCT imaging capability.
News | Radiation Therapy | June 11, 2021
June 11, 2021 — Accuray Incorporated announced the company has received CE Mark certification for its...
The new X-ray scanner can provide detailed information about the internal makeup of rocks, which could be useful for archaeologists studying fossils or miners making decisions about which ore to use in their extraction facilities. Image courtesy of Joel Greenberg, Duke University

The new X-ray scanner can provide detailed information about the internal makeup of rocks, which could be useful for archaeologists studying fossils or miners making decisions about which ore to use in their extraction facilities. Image courtesy of Joel Greenberg, Duke University

News | X-Ray | June 10, 2021
June 10, 2021 — Engineers at Duke University have demonstrated a prot