News | Women's Health | February 01, 2018

Microbubbles Make Breast Cancer More Susceptible to Radiation Therapy

Bursting oxygen-filled microbubbles in breast cancer makes tumors three times more sensitive to radiation therapy in preliminary tests with animal models of the disease

 

Microbubbles Make Breast Cancer More Susceptible to Radiation Therapy

February 1, 2018 – Injecting breast cancer with oxygen-filled microbubbles makes tumors three-times more sensitive to radiation therapy and improves survival in animal models of the disease. The study, published Jan. 21 in the International Journal of Radiation Oncology•Biology•Physics makes a strong case for moving this technology into clinical trials with breast cancer patients.

"Finding a way to reverse oxygen deficiency in tumors has been a goal in radiation therapy for over 50 years," said senior author John Eisenbrey, Ph.D., assistant professor of radiology at Thomas Jefferson University and investigator at Jefferson's Sidney Kimmel Cancer Center. "We've demonstrated here that oxygen microbubbles flush tumors with the gas, and make radiation therapy significantly more effective in animal models."

Microbubbles were originally developed to help improve ultrasound imaging. However, being able to "pop" oxygen-filled microbubbles within tumors using beams of ultrasound presented researchers with an opportunity. Most solid tumors are oxygen-deficient, in part because they quickly outgrow the supply of oxygen-carrying blood vessels that can penetrate the tumor mass. That lack of oxygen also makes tumors more resistant to radiation, which is why trying to flush tumors with oxygen became such a prized goal in the field.

In this study, Eisenbrey and colleagues showed that popping the microbubble with ultrasound immediately prior to radiation treatment could triple sensitivity of the cancer to radiation. It also nearly doubled the survival times in mice from 46 days with placebo, nitrogen-filled microbubbles, to 76 days with oxygen-filled microbubbles.

Radiation therapy works by creating oxygen – and other – free radicals in tumors, out of the oxygen present in the tissues. But when those oxygen levels are low, the free radicals produced by radiation therapy are also lower, offering less therapeutic benefit. With this approach, microbubbles are delivered to the general blood flow via intravenous injection, but are popped locally raising the oxygen level only in the tumor. Interestingly, the investigators showed that oxygen increased throughout the cancer mass, even in areas that did not have direct access to blood vessels.

"The very act of bursting these microbubbles within the tumor tissue seems to change the local physiology of the tumor and make cells generally more permeable to oxygen and potentially to chemotherapy as well," said Eisenbrey. "We think this is a promising approach to test in patients to amplify the effects of radiation therapy."

Eisenbrey and colleagues at the Sidney Kimmel Cancer Center are currently using a similar approach in a first-in-human clinical trial of microbubbles for improving radiation therapy of liver cancer. Using a U.S. Food and Drug Administration (FDA)-approved microbubble contrast agent, the researchers are bursting microbubbles in patients with liver cancer in combination with their standard treatment with radioembolization therapy. Though not filled with oxygen, the microbubble popping is thought to create enough disruption to the tumor to offer therapeutic benefit over radioembolization alone.

For more information: www.redjournal.org

 

Related Content

Profound Medical Receives U.S. FDA 510(k) Clearance for Tulsa-Pro
Technology | Interventional Radiology | August 16, 2019
Profound Medical Corp. announced it has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) to...
Drug Accelerates Blood System's Recovery After Radiation, Chemotherapy

Following radiation, the bone marrow shows nearly complete loss of blood cells in mice (left). Mice treated with the PTP-sigma inhibitor displayed rapid recovery of blood cells (purple, right). Credit: UCLA Broad Stem Cell Research Center/Nature Communications

News | Radiation Therapy | August 16, 2019
A drug developed by UCLA physician-scientists and chemists speeds up the regeneration of mouse and human blood stem...
Mevion and C-RAD Release Integration for Improved Proton Therapy Treatment Quality

Catalyst PT image courtesy of C-RAD

News | Patient Positioning Radiation Therapy | August 15, 2019
Mevion Medical Systems and C-RAD announced the integration between the C-RAD Catalyst PT and the Mevion S250i proton...
First Patient Enrolled in World's Largest Brain Cancer Clinical Trial
News | Radiation Therapy | August 15, 2019
Henry Ford Cancer Institute is first-in-the-world to enroll a glioblastoma patient in the GBM AGILE Trial (Adaptive...
Efficacy of Isoray's Cesium Blu Showcased in Recent Studies
News | Brachytherapy Systems | August 14, 2019
August 14, 2019 — Isoray announced a trio of studies recently reported at scientific meetings and published in medica
Imago Systems Announces Collaboration With Mayo Clinic for Breast Imaging

Image courtesy of Imago Systems

News | Mammography | August 14, 2019
Image visualization company Imago Systems announced it has signed a know-how license with Mayo Clinic. The multi-year...
Artificial Intelligence Could Yield More Accurate Breast Cancer Diagnoses
News | Artificial Intelligence | August 13, 2019
University of California Los Angeles (UCLA) researchers have developed an artificial intelligence (AI) system that...
Lake Medical Imaging Selects Infinitt for Multi-site RIS/PACS
News | PACS | August 09, 2019
Infinitt North America will be implementing Infinitt RIS (radiology information system)/PACS (picture archiving and...
MD Anderson to Expand Proton Therapy Center

The MD Anderson Proton Therapy Center expansion is expected to be completed in 2023. Rendering courtesy of Stantec.

News | Proton Therapy | August 08, 2019
The University of Texas MD Anderson Cancer Center unveiled plans to expand its Proton Therapy Center during a...