News | Women's Health | February 01, 2018

Microbubbles Make Breast Cancer More Susceptible to Radiation Therapy

Bursting oxygen-filled microbubbles in breast cancer makes tumors three times more sensitive to radiation therapy in preliminary tests with animal models of the disease

 

Microbubbles Make Breast Cancer More Susceptible to Radiation Therapy

February 1, 2018 – Injecting breast cancer with oxygen-filled microbubbles makes tumors three-times more sensitive to radiation therapy and improves survival in animal models of the disease. The study, published Jan. 21 in the International Journal of Radiation Oncology•Biology•Physics makes a strong case for moving this technology into clinical trials with breast cancer patients.

"Finding a way to reverse oxygen deficiency in tumors has been a goal in radiation therapy for over 50 years," said senior author John Eisenbrey, Ph.D., assistant professor of radiology at Thomas Jefferson University and investigator at Jefferson's Sidney Kimmel Cancer Center. "We've demonstrated here that oxygen microbubbles flush tumors with the gas, and make radiation therapy significantly more effective in animal models."

Microbubbles were originally developed to help improve ultrasound imaging. However, being able to "pop" oxygen-filled microbubbles within tumors using beams of ultrasound presented researchers with an opportunity. Most solid tumors are oxygen-deficient, in part because they quickly outgrow the supply of oxygen-carrying blood vessels that can penetrate the tumor mass. That lack of oxygen also makes tumors more resistant to radiation, which is why trying to flush tumors with oxygen became such a prized goal in the field.

In this study, Eisenbrey and colleagues showed that popping the microbubble with ultrasound immediately prior to radiation treatment could triple sensitivity of the cancer to radiation. It also nearly doubled the survival times in mice from 46 days with placebo, nitrogen-filled microbubbles, to 76 days with oxygen-filled microbubbles.

Radiation therapy works by creating oxygen – and other – free radicals in tumors, out of the oxygen present in the tissues. But when those oxygen levels are low, the free radicals produced by radiation therapy are also lower, offering less therapeutic benefit. With this approach, microbubbles are delivered to the general blood flow via intravenous injection, but are popped locally raising the oxygen level only in the tumor. Interestingly, the investigators showed that oxygen increased throughout the cancer mass, even in areas that did not have direct access to blood vessels.

"The very act of bursting these microbubbles within the tumor tissue seems to change the local physiology of the tumor and make cells generally more permeable to oxygen and potentially to chemotherapy as well," said Eisenbrey. "We think this is a promising approach to test in patients to amplify the effects of radiation therapy."

Eisenbrey and colleagues at the Sidney Kimmel Cancer Center are currently using a similar approach in a first-in-human clinical trial of microbubbles for improving radiation therapy of liver cancer. Using a U.S. Food and Drug Administration (FDA)-approved microbubble contrast agent, the researchers are bursting microbubbles in patients with liver cancer in combination with their standard treatment with radioembolization therapy. Though not filled with oxygen, the microbubble popping is thought to create enough disruption to the tumor to offer therapeutic benefit over radioembolization alone.

For more information: www.redjournal.org

 

Related Content

Fujifilm SonoSite Unveils Full Suite of iViz Point-of-Care Transducers

The L25v ultrasound transducer for the Fujifilm Sonosite iViz is available for superficial applications such as ophthalmic, arterial, venous, lung and nerve. Image courtesy of Fujifilm Sonosite.

Technology | Ultrasound Imaging | August 15, 2018
Fujifilm SonoSite Inc. announced the launch of two new transducers for the SonoSite iViz point-of-care ultrasound, now...
Illinois Governor Approves State Breast Density Reporting Bill Into Law
News | Breast Density | August 13, 2018
Illinois Gov. Bruce Rauner approved the Illinois Breast Density Reporting Law (Public Act 100-0749) on Aug. 10, 2018...
Videos | Radiation Therapy | August 13, 2018
ITN Editor Dave Fornell takes a tour of some of the innovative new technologies on the expo floor at the 2018 America
Videos | Radiation Therapy | August 13, 2018
A discussion with Mahadevappa Mahesh, MS, Ph.D., FAAPM, FACR, FACMP, FSCCT, professor of radiology and cardiology and
Videos | Proton Therapy | August 10, 2018
A discussion with Matthew Freeman, Ph.D., scientist at Los Alamos National Laboratory, New Mexico.
Exact Imaging Becomes UroGPO Imaging Partner
News | Ultrasound Imaging | August 10, 2018
Exact Imaging announced that it has become a UroGPO Imaging Partner, joining the North American urology-specific group...
Videos | Radiomics | August 09, 2018
A discussion with Martin Vallieres, Ph.D., post-doctoral fellow at McGill University, Montreal, Canada.
PET Tracer Identifies Estrogen Receptor Expression Differences in Breast Cancer Patients
News | PET Imaging | August 09, 2018
In metastatic breast cancer, prognosis and treatment is largely influenced by estrogen receptor (ER) expression of the...
iCAD Receives FDA Clearance of PowerLook Density Assessment for Digital Breast Tomosynthesis
Technology | Breast Density | August 08, 2018
iCAD announced U.S. Food and Drug Administration (FDA) clearance of its latest artificial intelligence (AI) software...
Cardiac Imaging Reveals Roots of Preeclampsia Damage in Pregnant Women
News | Women's Health | August 07, 2018
Johns Hopkins researchers say a heart imaging study of scores of pregnant women with the most severe and dangerous form...
Overlay Init