News | Women's Health | February 01, 2018

Microbubbles Make Breast Cancer More Susceptible to Radiation Therapy

Bursting oxygen-filled microbubbles in breast cancer makes tumors three times more sensitive to radiation therapy in preliminary tests with animal models of the disease

 

Microbubbles Make Breast Cancer More Susceptible to Radiation Therapy

February 1, 2018 – Injecting breast cancer with oxygen-filled microbubbles makes tumors three-times more sensitive to radiation therapy and improves survival in animal models of the disease. The study, published Jan. 21 in the International Journal of Radiation Oncology•Biology•Physics makes a strong case for moving this technology into clinical trials with breast cancer patients.

"Finding a way to reverse oxygen deficiency in tumors has been a goal in radiation therapy for over 50 years," said senior author John Eisenbrey, Ph.D., assistant professor of radiology at Thomas Jefferson University and investigator at Jefferson's Sidney Kimmel Cancer Center. "We've demonstrated here that oxygen microbubbles flush tumors with the gas, and make radiation therapy significantly more effective in animal models."

Microbubbles were originally developed to help improve ultrasound imaging. However, being able to "pop" oxygen-filled microbubbles within tumors using beams of ultrasound presented researchers with an opportunity. Most solid tumors are oxygen-deficient, in part because they quickly outgrow the supply of oxygen-carrying blood vessels that can penetrate the tumor mass. That lack of oxygen also makes tumors more resistant to radiation, which is why trying to flush tumors with oxygen became such a prized goal in the field.

In this study, Eisenbrey and colleagues showed that popping the microbubble with ultrasound immediately prior to radiation treatment could triple sensitivity of the cancer to radiation. It also nearly doubled the survival times in mice from 46 days with placebo, nitrogen-filled microbubbles, to 76 days with oxygen-filled microbubbles.

Radiation therapy works by creating oxygen – and other – free radicals in tumors, out of the oxygen present in the tissues. But when those oxygen levels are low, the free radicals produced by radiation therapy are also lower, offering less therapeutic benefit. With this approach, microbubbles are delivered to the general blood flow via intravenous injection, but are popped locally raising the oxygen level only in the tumor. Interestingly, the investigators showed that oxygen increased throughout the cancer mass, even in areas that did not have direct access to blood vessels.

"The very act of bursting these microbubbles within the tumor tissue seems to change the local physiology of the tumor and make cells generally more permeable to oxygen and potentially to chemotherapy as well," said Eisenbrey. "We think this is a promising approach to test in patients to amplify the effects of radiation therapy."

Eisenbrey and colleagues at the Sidney Kimmel Cancer Center are currently using a similar approach in a first-in-human clinical trial of microbubbles for improving radiation therapy of liver cancer. Using a U.S. Food and Drug Administration (FDA)-approved microbubble contrast agent, the researchers are bursting microbubbles in patients with liver cancer in combination with their standard treatment with radioembolization therapy. Though not filled with oxygen, the microbubble popping is thought to create enough disruption to the tumor to offer therapeutic benefit over radioembolization alone.

For more information: www.redjournal.org

 

Related Content

Sponsored Content | Videos | Ultrasound Imaging | December 14, 2018
Based on Mindray’s Living Technology, the Resona 7 (Sapphire), ZS3 (Diamond) and TE7 (Crystal) new ultrasound upgrades...
RSNA Study Shows Real-Time Indicator Improves Mammographic Compression
News | Mammography | December 12, 2018
Sigmascreening recently announced that more than 100,000 women have had mammography exams with the Sensitive Sigma...
Massachusetts Superior Court Grants Hologic Preliminary Injunction in Trade Secrets Lawsuits
News | Mammography | December 12, 2018
December 12, 2018 — A Massachusetts Superior Court granted a preliminary injunction in lawsuits by Hologic against Ch
Videos | Mammography | December 10, 2018
Stamatia Destounis, M.D., FACR, associate professor, University of Rochester School of Medicine, and attending radiol
RaySearch Developing RayCommand Treatment Control System for U.K. Proton Therapy Facility
Technology | Radiation Therapy | December 10, 2018
RaySearch has decided to develop a treatment control system, RayCommand, to act as a link between its RayStation...
Hitachi Medical Systems Europe Introduces Third-Generation Intelligent Vector Flow Mapping
News | Cardiovascular Ultrasound | December 07, 2018
Hitachi Medical Systems Europe introduced what it calls the next level of intelligent Vector Flow Mapping (iVFM) at...
FDA Clears iCAD's ProFound AI for Digital Breast Tomosynthesis
Technology | Mammography | December 07, 2018
iCAD Inc. announced clearance by the U.S. Food and Drug Administration (FDA) for their latest, deep-learning, cancer...
GE Healthcare Unveils New Applications and Smart Devices Built on Edison Platform
Technology | Artificial Intelligence | December 05, 2018
GE Healthcare recently announced new applications and smart devices built on Edison – a platform that helps accelerate...
Fujifilm Collaborates With Lunit on AI Pilot Project
News | Artificial Intelligence | December 05, 2018
Fujifilm Medical Systems USA Inc. announced a joint collaboration with Korean-based medical artificial intelligence (AI...