News | Artificial Intelligence | September 28, 2018

Medical Students Need More Education on Artificial Intelligence

Review of published research identifies gaps in knowledge for next generation of healthcare professionals on key emerging technology

Medical Students Need More Education on Artificial Intelligence

September 28, 2018 — Artificial intelligence (AI) driven by machine learning (ML) algorithms is a branch in the field of computer science that is rapidly gaining popularity within the healthcare sector. However, graduate medical education and other teaching programs within academic teaching hospitals across the U.S. and around the world have not yet come to grips with educating students and trainees on this emerging technology.

"The general public has become quite aware of AI and the impact it can have on healthcare outcomes such as providing clinicians with improved diagnostics. However, if medical education does not begin to teach medical students about AI and how to apply it into patient care then the advancement of technology will be limited in use and its impact on patient care," explained corresponding author Vijaya B. Kolachalama, Ph.D., assistant professor of medicine at Boston University School of Medicine (BUSM).

Using a PubMed search with 'machine learning' as the medical subject heading term, the researchers found that the number of papers published in the area of ML has increased since the beginning of this decade. In contrast, the number of publications related to undergraduate and graduate medical education have remained relatively unchanged since 2010.

Realizing the need for educating the students and trainees within the Boston University Medical Campus about ML, Kolachalama designed and taught an introductory course at BUSM. The course is intended to educate the next generation of medical professionals and young researchers with biomedical and life sciences backgrounds about ML concepts and help prepare them for the ongoing data science revolution.

The authors believe that if medical education begins to implement ML curriculum, physicians may begin to recognize the conditions and future applications where AI could potentially benefit clinical decision making and management early on in their career and be ready to utilize these tools better when beginning practice. "As medical education thinks about competencies for physicians, ML should be embedded into information technology and the education in that domain," said Priya Sinha Garg, M.D., associate dean ad interim for academic affairs at BUSM.

The authors hope this perspective article stimulates medical school and residency programs to think about the progressing field of AI and how to use it in patient care. "Technology without physician knowledge of its potential and applications does not make sense and will only further perpetuate healthcare costs."

These findings appear as a perspective in the journal NPJ Digital Medicine.1

For more information: www.nature.com/npjdigitalmed

Reference

1. Kolachalama V.B., Garg P.S. Machine learning and medical education. NPJ Digital Medicine, Sept. 27, 2018. https://doi.org/10.1038/s41746-018-0061-1

Related Content

DrChrono and 3D4Medical Partner to Bring 3-D Interactive Modeling to Physician Practices
News | Advanced Visualization | March 18, 2019
DrChrono Inc. and 3D4Medical have teamed up so practices across the United States can access 3-D interactive modeling...
Jennifer N. A. Silva, M.D., a pediatric cardiologist at Washington University School of Medicine in Saint Louis, Mo., describes “mixed reality” at ACC19 Future Hub.

Jennifer N. A. Silva, M.D., a pediatric cardiologist at Washington University School of Medicine in Saint Louis, Mo., describes “mixed reality” at ACC19 Future Hub.

Feature | Cardiac Imaging | March 17, 2019 | By Greg Freiherr
Virtual reality (VR) and its less immersive kin, augmented reality (AR), are gaining traction in some medical applica
WVU cardiology chief Partho Sengupta, M.D., describes at ACC 2019 how artificial intelligence already helps cardiologists in echocardiography.

WVU cardiology chief Partho Sengupta, M.D., describes at ACC 2019 how artificial intelligence already helps cardiologists in echocardiography. Photo by Greg Freiherr

Feature | Cardiac Imaging | March 16, 2019 | By Greg Freiherr
Machine learning is already having an enormous impact on cardiology, automatically calculating measurements in echoca
Sponsored Content | Videos | Enterprise Imaging | March 15, 2019
As a VNA, GE Healthcare Ce
Bay Labs Announces New Data on EchoGPS, AutoEF AI Software at ACC.19
News | Cardiovascular Ultrasound | March 15, 2019
Artificial intelligence (AI) company Bay Labs announced the presentation of two studies assessing performance of the...
Sponsored Content | Videos | Artificial Intelligence | March 13, 2019
At RSNA 2018, iCad showed how its...
Lucence Diagnostics to Develop AI Tools for Liver Cancer Treatment

Pseudocolor accentuated CT scan image of a liver tumor. Image courtesy of Lucence Diagnostics.

News | Oncology Diagnostics | March 12, 2019
Genomic medicine company Lucence Diagnostics announced a new project to develop artificial intelligence (AI) algorithms...
FDA Grants Breakthrough Designation to Paige.AI
News | Digital Pathology | March 08, 2019
Artificial intelligence (AI) startup company Paige.AI has been granted Breakthrough Device designation by the U.S. Food...