News | Artificial Intelligence | September 28, 2018

Medical Students Need More Education on Artificial Intelligence

Review of published research identifies gaps in knowledge for next generation of healthcare professionals on key emerging technology

Medical Students Need More Education on Artificial Intelligence

September 28, 2018 — Artificial intelligence (AI) driven by machine learning (ML) algorithms is a branch in the field of computer science that is rapidly gaining popularity within the healthcare sector. However, graduate medical education and other teaching programs within academic teaching hospitals across the U.S. and around the world have not yet come to grips with educating students and trainees on this emerging technology.

"The general public has become quite aware of AI and the impact it can have on healthcare outcomes such as providing clinicians with improved diagnostics. However, if medical education does not begin to teach medical students about AI and how to apply it into patient care then the advancement of technology will be limited in use and its impact on patient care," explained corresponding author Vijaya B. Kolachalama, Ph.D., assistant professor of medicine at Boston University School of Medicine (BUSM).

Using a PubMed search with 'machine learning' as the medical subject heading term, the researchers found that the number of papers published in the area of ML has increased since the beginning of this decade. In contrast, the number of publications related to undergraduate and graduate medical education have remained relatively unchanged since 2010.

Realizing the need for educating the students and trainees within the Boston University Medical Campus about ML, Kolachalama designed and taught an introductory course at BUSM. The course is intended to educate the next generation of medical professionals and young researchers with biomedical and life sciences backgrounds about ML concepts and help prepare them for the ongoing data science revolution.

The authors believe that if medical education begins to implement ML curriculum, physicians may begin to recognize the conditions and future applications where AI could potentially benefit clinical decision making and management early on in their career and be ready to utilize these tools better when beginning practice. "As medical education thinks about competencies for physicians, ML should be embedded into information technology and the education in that domain," said Priya Sinha Garg, M.D., associate dean ad interim for academic affairs at BUSM.

The authors hope this perspective article stimulates medical school and residency programs to think about the progressing field of AI and how to use it in patient care. "Technology without physician knowledge of its potential and applications does not make sense and will only further perpetuate healthcare costs."

These findings appear as a perspective in the journal NPJ Digital Medicine.1

For more information: www.nature.com/npjdigitalmed

Reference

1. Kolachalama V.B., Garg P.S. Machine learning and medical education. NPJ Digital Medicine, Sept. 27, 2018. https://doi.org/10.1038/s41746-018-0061-1

Related Content

NewYork-Presbyterian Hospital Partners With Philips for Health IT and Clinical Informatics
News | Enterprise Imaging | January 16, 2019
Philips announced that NewYork-Presbyterian Hospital has chosen to implement the company’s IntelliSpace Enterprise...
Artificial Intelligence Used in Clinical Practice to Measure Breast Density
News | Artificial Intelligence | January 15, 2019
An artificial intelligence (AI) algorithm measures breast density at the level of an experienced mammographer,...
Sponsored Content | Videos | Artificial Intelligence | January 15, 2019
ITN Contributing Editor Greg Freiherr offers an overview of...
Machine Learning Uncovers New Insights Into Human Brain Through fMRI
News | Neuro Imaging | January 11, 2019
An interdisciplinary research team led by scientists from the National University of Singapore (NUS) has successfully...
Videos | Interventional Radiology | January 11, 2019
Julius Chapiro, M.D., research faculty member and an...
AI Approach Outperformed Human Experts in Identifying Cervical Precancer
News | Digital Pathology | January 10, 2019
January 10, 2019 — A research team led by investigators from the National Institutes of Health and Global Good has de
Artificial intelligence, also called deep learning and machine learning, was the hottest topic at the 2018 Radiological Society of North America (RSNA)) meeting.

Artificial intelligence was the hottest topic at the 2018 Radiological Society of North America (RSNA)) meeting, which included a large area with its own presentation therater set asside for AI vendors.

Feature | Artificial Intelligence | January 10, 2019 | Dave Fornell, Editor
Hands down, the hottest topic in radiology the past two years has been the implementation of...
Pacific Northwest VA Network Selects Carestream as Enterprise PACS Supplier
News | PACS | January 08, 2019
Carestream has been awarded a multimillion-dollar healthcare information technology (IT) contract for Veterans Affairs...
Artificial Intelligence Pinpoints Nine Different Abnormalities in Head Scans

A brain scan (left) showing an intraparenchymal hemorrhage in left frontal region and a scan (right) of a subarachnoid hemorrhage in the left parietal region. Both conditions were accurately detected by the Qure.ai tool. Image courtesy of Nature Medicine.

News | Artificial Intelligence | January 07, 2019
The rise in the use of computed tomography (CT) scans in U.S. emergency rooms has been a well-documented trend1 in...