News | Artificial Intelligence | September 28, 2018

Medical Students Need More Education on Artificial Intelligence

Review of published research identifies gaps in knowledge for next generation of healthcare professionals on key emerging technology

Medical Students Need More Education on Artificial Intelligence

September 28, 2018 — Artificial intelligence (AI) driven by machine learning (ML) algorithms is a branch in the field of computer science that is rapidly gaining popularity within the healthcare sector. However, graduate medical education and other teaching programs within academic teaching hospitals across the U.S. and around the world have not yet come to grips with educating students and trainees on this emerging technology.

"The general public has become quite aware of AI and the impact it can have on healthcare outcomes such as providing clinicians with improved diagnostics. However, if medical education does not begin to teach medical students about AI and how to apply it into patient care then the advancement of technology will be limited in use and its impact on patient care," explained corresponding author Vijaya B. Kolachalama, Ph.D., assistant professor of medicine at Boston University School of Medicine (BUSM).

Using a PubMed search with 'machine learning' as the medical subject heading term, the researchers found that the number of papers published in the area of ML has increased since the beginning of this decade. In contrast, the number of publications related to undergraduate and graduate medical education have remained relatively unchanged since 2010.

Realizing the need for educating the students and trainees within the Boston University Medical Campus about ML, Kolachalama designed and taught an introductory course at BUSM. The course is intended to educate the next generation of medical professionals and young researchers with biomedical and life sciences backgrounds about ML concepts and help prepare them for the ongoing data science revolution.

The authors believe that if medical education begins to implement ML curriculum, physicians may begin to recognize the conditions and future applications where AI could potentially benefit clinical decision making and management early on in their career and be ready to utilize these tools better when beginning practice. "As medical education thinks about competencies for physicians, ML should be embedded into information technology and the education in that domain," said Priya Sinha Garg, M.D., associate dean ad interim for academic affairs at BUSM.

The authors hope this perspective article stimulates medical school and residency programs to think about the progressing field of AI and how to use it in patient care. "Technology without physician knowledge of its potential and applications does not make sense and will only further perpetuate healthcare costs."

These findings appear as a perspective in the journal NPJ Digital Medicine.1

For more information: www.nature.com/npjdigitalmed

Reference

1. Kolachalama V.B., Garg P.S. Machine learning and medical education. NPJ Digital Medicine, Sept. 27, 2018. https://doi.org/10.1038/s41746-018-0061-1

Related Content

Sponsored Content | Case Study | Enterprise Imaging | November 16, 2018
Centricity Clinical Archive Analytics uses Microsoft Azure and Power BI Embedded to derive intelligence from the data
Lunit Unveiling AI-Based Mammography Solution at RSNA 2018
News | Mammography | November 15, 2018
Medical artificial intelligence (AI) software company Lunit will be returning to the 104th Radiological Society of...
Life Image and Mendel.ai Bringing Artificial Intelligence to Clinical Trial Development
News | Artificial Intelligence | November 15, 2018
Life Image and Mendel.ai announced a new strategic partnership that will facilitate the adoption and enhancement of...
News | Enterprise Imaging | November 14, 2018
Konica Minolta Healthcare Americas Inc. will showcase new features and tools for the Exa Enterprise Imaging platform at...
Artificial Intelligence Predicts Alzheimer's Years Before Diagnosis
News | Neuro Imaging | November 14, 2018
Artificial intelligence (AI) technology improves the ability of brain imaging to predict Alzheimer’s disease, according...
Researchers Awarded 2018 Canon Medical Systems USA/RSNA Research Grants
News | Radiology Imaging | November 13, 2018
The Radiological Society of North America (RSNA) Research & Education (R&E) Foundation recently announced the...
MDW Unveils First Radiology Blockchain Platform at RSNA 2018
News | Radiology Business | November 13, 2018
Medical Diagnostic Web (MDW) will debut the first radiology blockchain platform designed to connect all players in the...
Subtle Medical Showcases Artificial Intelligence for PET, MRI Scans at RSNA 2018
News | Artificial Intelligence | November 13, 2018
At the 2018 Radiological Society of North America annual meeting (RSNA 2018), Nov. 25-30 in Chicago, Subtle Medical...
ContextVision Introduces AI-Powered Image Enhancement for Digital Radiography
Technology | Artificial Intelligence | November 09, 2018
With the integration of deep learning technology, ContextVision takes digital radiography to new levels with its latest...
Ambra Health Launches Mobile App for Instant Medical Image Access
Technology | Mobile Devices | November 09, 2018
Ambra Health announced the launch of its first iOS mobile app for healthcare providers and patient access. Designed...