The four standard views of an individual mammogram were fed into Mirai. The image encoder mapped each view to a vector, and the image aggregator combined the four view vectors into a single vector for the mammogram. In this work, we used a single shared ResNet-18 as an image encoder, and a transformer as our image aggregator. The risk factor predictor module predicted all the risk factors used in the Tyrer-Cuzick model, including age, detailed family history, and hormonal factors, from the mammogram vector.

The four standard views of an individual mammogram were fed into Mirai. The image encoder mapped each view to a vector, and the image aggregator combined the four view vectors into a single vector for the mammogram. In this work, we used a single shared ResNet-18 as an image encoder, and a transformer as our image aggregator. The risk factor predictor module predicted all the risk factors used in the Tyrer-Cuzick model, including age, detailed family history, and hormonal factors, from the mammogram vector. The additive hazard layer combined information from both the image aggregator and risk factors (predicted or given) to predict coherent risk assessments across 5 years (Yr).


January 28, 2021 — A new machine learning algorithm based on mammograms can estimate the risk of breast cancer in women more accurately than current risk models, according to a study from Adam Yala and colleagues. The algorithm, which was tested with datasets from three large hospitals located worldwide, could help clinicians design guidelines for breast cancer screening that meet the need for early detection while reducing false-positives, test costs, and other issues associated with overscreening. Mammograms are the most common method to screen for breast cancer, as more than 39 million procedures are performed in the U.S. annually. However, their widespread adoption has not gone without controversy. Critics charge that aggressive screening results in untenable medical costs, higher anxiety in patients, and a substantial rate of false positives. On the other hand, supporters of frequent testing argue it is necessary to detect tumors as early as possible, and the disagreement has led to inconsistent guidelines for when screening should start and how frequent it should be. Yala et al. theorized that improving the accuracy of the risk models that inform guidelines could lead to better recommendations. They designed and trained a new model named Mirai, which integrates data from mammograms to produce consistent breast cancer risk assessments at multiple time points, such as within 1 year or 5 years. When independently tested with data from 106,615 patients from three hospitals, located in the U.S., Sweden, and Taiwan, Mirai identified 41.5% of patients who would develop cancer within 5 years. In contrast, current approaches such as the Tyrer-Cuzick and Hybrid Deep Learning models only identified 22.9% and 36.1% of patients, respectively. Mirai was also effective across various races and ethnicities, supporting its potential to inform screening guidelines for large and diverse populations.

For more information: www.aaas.org


Related Content

News | Mammography

April 29, 2025 — iCAD, a global provider of clinically proven AI-powered cancer detection solutions, has announced a ...

Time April 29, 2025
arrow
News | Mammography

April 24, 2025 — GE HealthCare will feature its latest advancements in diagnostic accuracy and patient-centered breast ...

Time April 24, 2025
arrow
News | SIIM

April 14, 2025 —The Society for Imaging Informatics in Medicine (SIIM) Annual Meeting is set to take place May 23 to 25 ...

Time April 14, 2025
arrow
News | Breast Imaging

March 20, 2025 — GE HealthCare has launched Invenia Automated Breast Ultrasound (ABUS) Premium, the latest 3D ultrasound ...

Time March 21, 2025
arrow
News | Artificial Intelligence

March 10, 2025 — Lunit, a provider of AI-powered solutions for cancer diagnostics and therapeutics, has published a ...

Time March 10, 2025
arrow
News | Breast Imaging

March 04, 2025 — Optellum has entered a strategic agreement with Volpara Health, a Lunit company and a provider of ...

Time March 04, 2025
arrow
News | Artificial Intelligence

Feb. 19, 2025 — SimonMed Imaging and HeartLung Technologies have signed a strategic partnership to offer HeartLung's AI ...

Time March 04, 2025
arrow
News | Artificial Intelligence

Feb. 4, 2025 — Riverain Technologies recently announced it expanded across eight countries in 2024 and added nearly 50 ...

Time February 04, 2025
arrow
News | Ultrasound Imaging

Jan. 28, 2025 — GE HealthCare recently announced it has received 510(k) clearance from the United States Food and Drug ...

Time January 29, 2025
arrow
News | Breast Imaging

Jan. 8, 2025 — ScreenPoint Medical has acquiredf Biomediq A/S, a research-based company focused on the research ...

Time January 10, 2025
arrow
Subscribe Now