News | Artificial Intelligence | March 22, 2021

Analysis system for the diagnosis of breast cancer

Detection of tumor-infiltrating lymphocytes (TILs) using explainable AI. The AI-technique is used to generate a heatmap showing TILs (red) and other tissues and cells (blue and green). Image courtesy of Klauschen/Charité

Detection of tumor-infiltrating lymphocytes (TILs) using explainable AI. The AI-technique is used to generate a heatmap showing TILs (red) and other tissues and cells (blue and green). Image courtesy of Klauschen/Charité


March 22, 2021 — Researchers at Charité - Universitätsmedizin Berlin and TU Berlin as well as the University of Oslo have developed a new tissue-section analysis system for diagnosing breast cancer based on artificial intelligence (AI). Two further developments make this system unique: For the first time, morphological, molecular and histological data are integrated in a single analysis. Secondly, the system provides a clarification of the AI decision process in the form of heatmaps. Pixel by pixel, these heatmaps show which visual information influenced the AI decision process and to what extent, thus enabling doctors to understand and assess the plausibility of the results of the AI analysis. This represents a decisive and essential step forward for the future regular use of AI systems in hospitals. The results of this research have now been published in Nature Machine Intelligence.

Cancer treatment is increasingly concerned with the molecular characterization of tumor tissue samples. Studies are conducted to determine whether and/or how the DNA has changed in the tumor tissue as well as the gene and protein expression in the tissue sample. At the same time, researchers are becoming increasingly aware that cancer progression is closely related to intercellular cross-talk and the interaction of neoplastic cells with the surrounding tissue - including the immune system.

Although microscopic techniques enable biological processes to be studied with high spatial detail, they only permit a limited measurement of molecular markers. These are rather determined using proteins or DNA taken from tissue. As a result, spatial detail is not possible and the relationship between these markers and the microscopic structures is typically unclear. "We know that in the case of breast cancer, the number of immigrated immune cells, known as lymphocytes, in tumor tissue has an influence on the patient's prognosis. There are also discussions as to whether this number has a predictive value - in other words if it enables us to say how effective a particular therapy is," said Prof. Frederick Klauschen, M.D., of Charité's Institute of Pathology.

"The problem we have is the following: We have good and reliable molecular data and we have good histological data with high spatial detail. What we don't have as yet is the decisive link between imaging data and high-dimensional molecular data," added Prof. Klaus-Robert Müller, M.D., professor of machine learning at TU Berlin. Both researchers have been working together for a number of years now at the national AI center of excellence the Berlin Institute for the Foundations of Learning and Data (BIFOLD) located at TU Berlin.

It is precisely this symbiosis which the newly published approach makes possible. "Our system facilitates the detection of pathological alterations in microscopic images. Parallel to this, we are able to provide precise heatmap visualizations showing which pixel in the microscopic image contributed to the diagnostic algorithm and to what extent," explained Müller. The research team has also succeeded in significantly further developing this process: "Our analysis system has been trained using machine learning processes so that it can also predict various molecular characteristics, including the condition of the DNA, the gene expression as well as the protein expression in specific areas of the tissue, on the basis of the histological images.

Next on the agenda are certification and further clinical validations - including tests in tumor routine diagnostics. However, Klauschen is already convinced of the value of the research: "The methods we have developed will make it possible in the future to make histopathological tumor diagnostics more precise, more standardized and qualitatively better."

For more information: www.charite.de

Related Breast Cancer/AI Workflow Content:

VIDEO: Integrating Artificial Intelligence Into Radiologists Workflow


Related Content

News | Imaging Software Development

May 20, 2025 – Intelerad, a provider of medical imaging software solutions, recently announced its prime partnership ...

Time May 21, 2025
arrow
News | Teleradiology

May 21, 2025 — Konica Minolta Healthcare Americas, Inc and NewVue have announced the introduction of Exa Teleradiology ...

Time May 21, 2025
arrow
News | Computed Tomography (CT)

May 15, 2025 — GE HealthCare has launched CleaRecon DL, technology powered by a deep-learning algorithm, to improve the ...

Time May 15, 2025
arrow
News | Radiation Therapy

May 14, 2025 — Siemens Healthineers is investing $150 million in new projects to expand production, create jobs and ...

Time May 15, 2025
arrow
News | Radiation Oncology

May 2, 2025 — GE HealthCare has announced an intended expansion of its radiation oncology portfolio as well as the ...

Time May 03, 2025
arrow
News | Cardiac Imaging

April 30, 2025 – Viz.ai, the leader in AI-powered disease detection and intelligent care coordination, has launched Viz ...

Time May 02, 2025
arrow
News | X-Ray

May 01, 2025 — Researchers from the Rajpurkar Lab in the Department of Biomedical Informatics at Harvard Medical School ...

Time May 01, 2025
arrow
News | Mammography

April 29, 2025 — iCAD, a global provider of clinically proven AI-powered cancer detection solutions, has announced a ...

Time April 29, 2025
arrow
News | Mammography

April 24, 2025 — GE HealthCare will feature its latest advancements in diagnostic accuracy and patient-centered breast ...

Time April 24, 2025
arrow
News | Lung Imaging

April, 15, 2025 — Optellum has entered an agreement with Bristol Myers Squibb to leverage AI in early diagnosis and ...

Time April 17, 2025
arrow
Subscribe Now