News | February 26, 2009

Magnetic Particle Imaging Generates Real-Time Blood Flow, Heart Movement Images

February 26, 2009 - The first 3D imaging results obtained with a new imaging technology called Magnetic Particle Imaging (MPI) produced reportedly unprecedented real-time images of arterial blood flow and volumetric heart motion, reported Royal Philips Electronics.

The technology uses the magnetic properties of iron-oxide nanoparticles injected into the bloodstream and has been used in a pre-clinical studies. This is said to represent a major step forward in taking Magnetic Particle Imaging from a theoretical concept to an imaging tool to help improve diagnosis and therapy planning for many of the world’s major diseases, such as heart disease, stroke and cancer. The results of the pre-clinical study were published in issue 54 of Physics in Medicine and Biology (2009).

“A novel noninvasive cardiac imaging technology is required to further unravel and characterize the disease processes associated with atherosclerosis, in particular those associated with vulnerable plaque formation which is a major risk factor for stroke and heart attacks,” said Professor Valentin Fuster, M.D., Ph.D., director of the Mount Sinai Heart Center, New York. “Through its combined speed, resolution and sensitivity, Magnetic Particle Imaging technology has great potential for this application, and the latest in-vivo imaging results represent a major breakthrough.”

According to Henk van Houten, senior vice president of Philips Research and head of the Healthcare research program, “By adding important functional information to the anatomical data obtained from existing modalities such as CT and MR, Philips’ MPI technology has the potential to significantly help in the diagnosis and treatment planning of major diseases such as atherosclerosis and congenital heart defects.”

Philips’ Magnetic Particle Imaging uses the magnetic properties of injected iron-oxide nanoparticles to measure the nanoparticle concentration in the blood. Because the human body contains no naturally occurring magnetic materials visible to MPI, there is no background signal. After injection, the nanoparticles therefore appear as bright signals in the images, from which nanoparticle concentrations can be calculated. By combining high spatial resolution with short image acquisition times (as short as 1/50th of a second), Magnetic Particle Imaging can capture dynamic concentration changes as the nanoparticles are swept along by the blood stream. This could ultimately allow MPI scanners to perform a wide range of functional cardiovascular measurements in a single scan. These could include measurements of coronary blood supply, myocardial perfusion, and the heart’s ejection fraction, wall motion and flow speeds.

The results obtained from Philips’ experimental MPI scanner mark an important step towards the development of a whole-body system for use on humans. Some of the technical challenges in scaling up the system relate to the magnetic field generation required for human applications. Others lie in the measurement and processing of the extremely weak signal emitted by the nanoparticles. Signal measurement and processing are areas where Philips has a great deal of proven expertise and experience that it is currently applying to the task.

The scientific article “Three-dimensional real-time in vivo magnetic particle imaging” published in issue 54 of Physics in Medicine and Biology (2009) can be downloaded from http://stacks.iop.org/0031-9155/54/L1.

For more information: www.medical.philips.com

Related Content

Bay Labs and Northwestern Medicine Enroll First Patient in AI Echocardiography Study
News | Cardiovascular Ultrasound | November 19, 2018
Medical artificial intelligence (AI) company Bay Labs and Northwestern Medicine announced that the first patient has...
Researchers Awarded 2018 Canon Medical Systems USA/RSNA Research Grants
News | Radiology Imaging | November 13, 2018
The Radiological Society of North America (RSNA) Research & Education (R&E) Foundation recently announced the...
Cardiac Ultrasound Software Streamlines Fetal Heart Exams
Feature | Cardiovascular Ultrasound | October 30, 2018
A new tool called fetalHQ on GE Healthcare’s Voluson ultrasound systems is the first tool to simultaneously examine the...
Hitachi Supports ASE Foundation Cardiovascular Outreach Mission in West Virginia
News | Cardiovascular Ultrasound | October 29, 2018
Hitachi Healthcare Americas participated in the cardiovascular screening and diagnostic triage event that took place...
Carotid Artery MRI Improves Cardiovascular Disease Risk Assessment
News | Magnetic Resonance Imaging (MRI) | October 23, 2018
Magnetic resonance imaging (MRI) measurements of wall thickness in the carotid arteries improve cardiovascular disease...
CT Offers Non-Invasive Alternative for Complex Coronary Disease Treatment Planning
News | CT Angiography (CTA) | October 16, 2018
A new study published in the European Heart Journal shows computed tomography (CT) can be a useful aid in heart team...

Images from computed tomography (CT) colonography show segmented abdominal aortic calcification measured with semiautomated CT tool on coronal image. Within region of interest over aorta selected by user, tool automatically segments and quantifies aortic calcification (shown in blue). 

Image Credit: O’Connor S D, Graffy P M, Zea R, et al. Does nonenhanced CT-based quantification of abdominal aortic calcification outperform the Framingham Risk Score in predicting cardiovascular event sin asymptomatic adults? Radiology doi: 10.1148/radiol.2018180562. Published online Oct. 2, 2018. © RSNA.

News | Computed Tomography (CT) | October 12, 2018
Computed tomography (CT)-based measures of calcification in the abdominal aorta are strong predictors of heart attacks...
FDA Clears Magnetom Sola 1.5T MRI From Siemens Healthineers
Technology | Magnetic Resonance Imaging (MRI) | October 09, 2018
The U.S. Food and Drug Administration (FDA) has cleared the Magnetom Sola, a 1.5 Tesla magnetic resonance imaging (MRI...
An example of the newest generation of smart cardiac CT software that automatically identifies the anatomy, autotraces the centerlines on the entire coronary tree and labels each vessel segment.

An example of the newest generation of smart cardiac CT software that automatically identifies the anatomy, autotraces the centerlines on the entire coronary tree and labels each vessel segment. This greatly speeds CT workflows, saving time for techs, radiologists and cardiologists.

Feature | Radiology Imaging | October 04, 2018 | By Dave Fornell
Here is a checklist of dose-sparing practices for cardiac computed tomography (CT) imaging used in the cath lab.
Osprey Medical and GE Healthcare Launch Acute Kidney Injury Educational Program
News | Angiography | September 25, 2018
September 21, 2018 — Osprey Medical announced a collaboration with GE Healthcare on Osprey’s Be Kind to Kidneys campa