News | Breast Imaging | June 28, 2017

Laser Imaging "Bowl" to Give Instant Test for Breast Cancer

European scientists developing photoacoustic imaging system to increase patient comfort and shorten the diagnostic process

Laser Imaging "Bowl" to Give Instant Test for Breast Cancer

June 28, 2017 — In a bid to make the world's first while-you-wait test for breast cancer, European scientists are developing a comfortable hemispherical bowl lined with laser sources and ultrasound detectors with the potential to reduce the stages in spotting the disease into a single appointment.

Current breast cancer diagnosis can be distressing and painful over a number of weeks. Multiple stages can involve visiting a general practitioner, being sent to a specialist for an X-ray mammogram, having an ultrasound, before undergoing a needle, a punch or a vacuum assisted biopsy, as well as placing one breast at a time between two metal plates in a painful clamp.

However, a new imaging system being developed by scientists at the University of Twente in the Netherlands intends to remove the discomfort and uncertainty involved in a diagnosis.

The device employs both light and sound together in a technique called photoacoustics, combining lasers and photonics with ultrasound detection.

The size of a hospital bed, a patient lies face down placing their breast snugly into the ‘reader’, a hemispherical ‘bowl’ lined with up to a hundred optical fibers and several ultrasound detectors.

Multiple images of a suspect breast and tumor are then acquired from dozens of different angles before assembling the multiple shots into a single 3-D image. 

The ‘PAMMOTH’ (Photoacoustic Ultrasound Mammoscopy for evaluating screening-detected abnormalities in the breast), hopes to lead the researchers into photoacoustic, real-time 3-D imaging of suspicious lesions.

Project coordinator Srirang Manohar explained, “We are creating an imaging device that we hope will reduce all of the stages involved in spotting breast cancer into one convenient appointment in order to reduce time, uncertainty and the number of unnecessary biopsies. We intend to make breast cancer diagnosis a one-stop-shop, while you wait.”

It works by sending short pulses of light into the breast towards the suspected lesion. Some of the delivered energy will be absorbed in the tissue and converted into heat, leading to transient thermoelastic expansion, or a mechanical ‘push’ signal from the suspected tumor.

Ultrasound detectors on the surface of the breast, from the hemispherical reader bowl where the breast is placed, can then detect and measure these push signals before analyzing them on-site. Here the imager can look into the hemoglobin (the oxygen-carrying protein in the blood) activity within the suspected tumor.

Since tumors consume oxygen at high rates to survive, lower oxygenation levels around a suspect lesion could tell a physician that a suspect lump is more likely to be a malignant growth than not.

The imager employs a multi-wavelength illumination in the near-infrared wavelength region to extract information about blood oxygenation, using PAMMOTH’s own image reconstruction methods.

As part of the PAMMOTH team, researchers at University College London (UCL) are working on the mathematics, the image reconstruction and the analysis of the signals to determine how aggressive a tumor could be.

By gathering key information about the hemoglobin and oxygenation levels to and from the suspected tumor, the user could diagnose how likely it would be for the tumor to spread or whether it was simply benign.

“An aggressive tumor has a high metabolism and consumes oxygen more rapidly than normal tissue or a benign lesion. Our instrument and the mathematical approaches we are developing could allow us to check the oxygen saturation rate accurately,” said Manohar. “If a patient’s oxygen saturation rate was found to be considerably lower than surrounding tissue then we could pinpoint where an aggressive tumor could be, and radiologists could understand how the tumor is likely to behave.”

Current techniques to diagnose breast cancer such as X-ray mammography, ultrasound or magnetic resonance imaging (MRI) scans can sometimes fail to spot a tumor from healthy tissue or a benign abnormality, resulting in tumors that are missed and unnecessary biopsies being carried out.

Unnecessary biopsies and risks of false positives in breast cancer diagnosis are hotly contested topics among medical experts. As well as the untold stress and discomfort experienced by women all over the world by unnecessary treatments, inefficient diagnoses have an extremely worrying cost implication.

Every year in the United States alone, $4 billion is spent on false-positive mammograms and breast cancer over diagnosis among women ages 40-59, according to research published in Health Affairs. A similar picture is played out across Europe with millions of Euros being spent on unnecessary mammograms.

“A prime focus of the PAMMOTH project is to develop an imager and data analysis to be able to intervene at a very early stage. We need to be able to say whether a suspect lesion is good or bad. This technique would have a substantial impact upon the money spent on unnecessary biopsies, as well as to remove the trauma involved in a diagnosis for women around the world,” said Manohar.

The PAMMOTH team hopes to have a prototype ready for 2020 ready for completion in 2021.

Coordinated in the Netherlands at the University of Twente, the PAMMOTH project received a grant of €4,352,007.50 from Horizon 2020 via the Photonics Public Private Partnership.

For more information: www.photonics21.org

Related Content

Category A

Category A

Feature | Breast Density | April 03, 2020 | By Dayna Williams M.D., Shivani Chaudhry, M.D., and Laurie R. Margolies, M.D.
Breast cancer is the most common cance
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2
News | Mammography | March 25, 2020
March 25, 2020 — The...
The 2020 Society of Breast Imaging/American College of Radiology (SBI/ACR) annual symposium has been cancelled, and the event rescheduled for April 8-11, 2020, in Savannah, Ga. #COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SBI20
News | Society of Breast Imaging (SBI) | March 16, 2020
March 16, 2020 — The 2020 Society of Breast Imaging/American College of Radiology (...
DBT, sometimes called 3-D mammography, emerged in the last decade as a powerful tool for breast cancer screening

Images in a 57-year-old woman noted to have "good prognosis" invasive cancer detected at digital breast tomosynthesis (DBT) screening. (a) Craniocaudal view of the left breast obtained with the two-dimensional digital mammography (DM) portion of the DM/DBT screening study demonstrates a subtle area of distortion in the medial left breast. (b) Single-slice image from the left craniocaudal DBT portion of the screening study shows an area of bridging distortion (circle). (c) Electronically enlarged image of the area of concern seen on the left craniocaudal view in a single DBT slice as shown in b. (d) Targeted US scan demonstrates two small adjacent irregular solid masses. US-guided core biopsy yielded an invasive carcinoma of the tubular subtype that was estrogen receptor positive, progesterone receptor positive, and human epidermal growth factor receptor 2 negative. The results of the sentinel node biopsy were negative. Image courtesy of the Radiological Society of North America

News | Breast Imaging | March 11, 2020
March 11, 2020 — A new study published in the journal ...
SoftVue image stacks of sound speed, as shown for cases ranging across the four Breast Imaging Reporting and Data System (BI-RADS) breast density categories

Example: SoftVue image stacks of sound speed, as shown for cases ranging across the four Breast Imaging Reporting and Data System (BI-RADS) breast density categories ((a), fatty; (b), scattered; (c), heterogeneously dense; (d), extremely dense). Note the quantitative scale indicating that absolute measurements are obtained. Image courtesy of MDPI

News | Breast Imaging | March 10, 2020
March 10, 2020 — ...
The study concludes that a combination of Artificial Intelligence algorithms and the interpretations of radiologists could, in the U.S. alone, result in a half million women not having to undergo unnecessary diagnostic tests every year

Researchers who participated in the DM (digital mammography) DREAM Challenge.

News | Mammography | March 07, 2020
March 7, 2020 — The stu...
Christopher Comstock, M.D., ECOG-ACRIN Cancer Research Group study published in JAMA builds evidence for use of abbreviated MRI in women with dense breasts

Christopher Comstock, M.D., (Memorial Sloan Kettering Cancer Center) is the lead author of a paper in JAMA that reports that abbreviated breast MRI detected significantly more (almost 2 and a half times as many) breast cancers than digital breast tomosynthesis (3-D mammography) in average-risk women with dense breasts. Photo courtesy of Memorial Sloan Kettering Cancer Center

News | Breast Imaging | February 26, 2020
February 26, 2020 — According to a study
Women 75-plus May Not Benefit from Breast Cancer Screening
News | Mammography | February 25, 2020
February 25, 2020 — According to newly published research in an article titled...
Recognized as the “Pulitzer Prize of the business press,” the Jesse H. Neal Award finalists are selected for exhibiting journalistic enterprise, service to the industry and editorial craftsmanship
News | Radiology Business | February 19, 2020
February 19, 2020 — Connectiv, a division of The Software and Information Industry Association (SIIA), has announced