News | Neuro Imaging | August 21, 2015

Johns Hopkins Study Reveals Superior Adaptability of Brain's Vision Center

Researchers uncover how and when the visual cortex of blind children adapts to respond to spoken language, sound, music

Johns Hopkins University, adaptability, brain's vision center, blind children, functional magnetic resonance imaging, Marina Bedny

Image courtesy of Johns Hopkins University

August 21, 2015 — By early childhood, the sight regions of a blind person’s brain respond to sound, especially spoken language, a Johns Hopkins University neuroscientist has found. The results, published this week in The Journal of Neuroscience, suggest that a young, developing brain has a striking capacity for functional adaptation.

“The traditional view is that cortical function is rigidly constrained by evolution. We found in childhood, the human cortex is remarkably flexible,” said Johns Hopkins cognitive neuroscientist Marina Bedny, who conducted the research while at Massachusetts Institute of Technology (MIT). “And experience has a much bigger role in shaping the brain than we thought.”

Bedny, an assistant professor in the Department of Psychological and Brain Sciences, studied 19 blind and 40 sighted children, ages 4 to 17, along with MIT cognitive scientists Hilary Richardson and Rebecca Saxe. All but one of the blind children were blind since birth.

They monitored the children’s brain activity with functional magnetic resonance imaging while the children listened to stories, music or the sound of someone speaking an unfamiliar language. The blind children’s vision portion of the brain, the left lateral occipital area, responded to spoken language, music and foreign speech — but most strongly to stories they could understand. In sighted children and sighted children wearing blindfolds, that same area of the brain didn’t respond.

The researchers concluded that blind children’s ‘visual’ cortex is involved in understanding language.

Working with individuals who are blind offers cognitive researchers an opportunity to discover how nature and nurture, or a person’s genes and their experience, sculpt brain function.

Though scientists have shown that occipital cortexes of congenitally blind adults can respond to language and sound, this study offers the first look at how and when the change in brain function occurs.

The team found the blind children’s occipital cortex response to stories reached adult levels by age 4. Because spoken language had colonized the brain’s visual region so early in the children’s development, the team realized the brain adaptation had nothing to do with a child’s proficiency in Braille. Scientists had previously guessed that brain plasticity for spoken language in blind people had something to do with Braille.

Blind children’s occipital reaction to the other sounds, music and foreign speech, did increase as they aged.

Bedny believes her findings could one day lead to improved therapies for people with brain damage. If someone had a damaged part of the brain, she said it could be possible to train another part of the brain do the damaged part’s work.

“Early in development, the human cortex can take on a strikingly wide range of functions,” Bedny said. “We should think of the brain like a computer, with a hard drive ready to be programmed and reprogrammed to do what we want.”

For more information: www.pbs.jhu.edu

Related Content

New Study Redefines Therapeutic Dose Guidelines for Non-Small Cell Lung Cancer
News | Lung Cancer | April 23, 2019
Non-small cell lung cancer is a common cancer for both men and women. Many people who are diagnosed with this type of...
Comparison of state Medicaid fees for radiation oncology services for breast cancer and nonradiation oncology services per the Kaiser Family Foundation Index

Fig. 1: Comparison of state Medicaid fees for radiation oncology services for breast cancer and nonradiation oncology services per the Kaiser Family Foundation Index. (Agarwal et al, Red Journal, 2019) Credit: Elsevier

News | Radiation Therapy | April 22, 2019
April 22, 2019 — A new study finds wide state
Stereotactic Radiosurgery Effective for Pediatric Arteriovenous Malformation Patients
News | Radiation Therapy | April 19, 2019
Ching-Jen Chen, M.D., of the neurosurgery department at the University of Virginia (UVA) Health System, was the winner...
Video Plus Brochure Helps Patients Make Lung Cancer Scan Decision

Image courtesy of the American Thoracic Society

News | Lung Cancer | April 19, 2019
A short video describing the potential benefits and risks of low-dose computed tomography (CT) screening for lung...
Artificial Intelligence Performs As Well As Experienced Radiologists in Detecting Prostate Cancer
News | Artificial Intelligence | April 18, 2019
University of California Los Angeles (UCLA) researchers have developed a new artificial intelligence (AI) system to...
Surgically Guided Brachytherapy Improves Outcomes for Intracranial Neoplasms
News | Brachytherapy Systems | April 18, 2019
Peter Nakaji, M.D., FAANS, general practice neurosurgeon at Barrow Neurological Institute, presented new research on...
Check-Cap Initiates U.S. Pilot Study of C-Scan for Colorectal Cancer Screening
News | Colonoscopy Systems | April 15, 2019
Check-Cap Ltd. has initiated its U.S. pilot study of the C-Scan system for prevention of colorectal cancer through...
A smart algorithm has been trained on a neural network to recognize the appearance of breast cancer in MR images

A smart algorithm has been trained on a neural network to recognize the appearance of breast cancer in MR images. The algorithm, described at the SBI/ACR Breast Imaging Symposium, used “Deep Learning,“ a form of machine learning, which is a type of artificial intelligence. Graphic courtesy of Sarah Eskreis-Winkler, M.D.

Feature | Artificial Intelligence | April 12, 2019 | By Greg Freiherr
The use of smart algorithms has the potential to make healthcare more efficient.
Gamma Knife radiosurgery has become the preferred radiation therapy option for patients with brain tumors at facilities like the Northwestern Medicine Cancer Center, pictured here

Gamma Knife radiosurgery has become the preferred radiation therapy option for patients with brain tumors at facilities like the Northwestern Medicine Cancer Center, pictured here. The technology is favored largely for its ability to precisely target tumors while sparing healthy tissue.

Feature | Radiation Oncology | April 11, 2019 | By Jeff Zagoudis
Brain tumors are some of the most complicated forms of cancer to treat due to their extremely sensitive location.
Deep Lens Closes Series A Financing for Digital AI Pathology Platform
News | Digital Pathology | April 09, 2019
Digital pathology company Deep Lens Inc. announced the closing of a $14 million Series A financing that will further...