News | Ultrasound Imaging | December 13, 2016

Japanese Scientists Develop Wearable Terahertz Scanning Device

Portable device uses carbon nanotubes to better image three-dimensional objects

terahertz imaging, wearable scanning device, Tokyo Institute of Technology, Nature Photonics

Terahertz imaging of a human hand using arrays of carbon nanotubes: (left) human hand inserted into the imaging device, and (right) resulting scan of the human hand.

December 13, 2016 — Scientists at Tokyo Institute of Technology have developed a portable and wearable terahertz scanning device for non-invasive inspection of three-dimensional objects. The device is made using arrays of carbon nanotubes and does not require bulky peripheral optical components.

The device is expected to have wide-ranging applications including the noninvasive inspections of medical and drug delivery equipment such as syringes, as well as in medicine for imaging cancer cells, blood clots, sweat glands and teeth. The findings are published in the November 2016 issue of Nature Photonics.

Imaging devices based on terahertz waves show promise for noninvasive inspection of solid objects and soft tissue of the human body. However, terahertz waves have difficulty in imaging and reproducing the curved contours of three-dimensional objects. Furthermore, terahertz devices currently used for whole-body scans at airports must rotate 360 degrees around the human body, and thus they are large, bulky and not portable. In addition, the materials used to fabricate conventional terahertz systems are not flexible, and the terahertz detectors must be cooled in order to achieve high detection sensitivity.

Therefore, researchers are constantly searching for ways of producing terahertz imaging systems that are portable, flexible and operate efficiently at room temperature. To address these challenges, Yukio Kawano and colleagues at the Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, have demonstrated a terahertz imaging device fabricated with arrays of carbon nanotubes (CNT). Notably, CNTs have previously been used for the fabrication of photodetectors that operate in the visible, infrared and terahertz regions of the electromagnetic spectrum.

The Tokyo Tech team fabricated a flexible, wide-band terahertz scanner by integrating 23 CNT detector elements into a single array. The mechanical strength of the CNT film used in the detector enabled it to be readily bent over a wide range of angles, unlike conventional semiconductor materials that are fragile and break under stress. Importantly, the CNT films also absorb electromagnetic radiation over a broad terahertz range, which eliminates the need for planar antennas to scan objects. The terahertz scanner developed by Kawano and his team was successfully used for active imaging of flat and curved samples; multiview scanning of cylindrical samples; and passive wearable imaging of a human hand.

In the future, the research team expects that the applications of their terahertz scanner will enhance the capability of noninvasive inspections in pharmaceutics, food quality control and medical monitoring. These applications are possible because the terahertz scanner is wearable, portable, and can scan 3-D objects without requiring complex optics or equipment.

For more information: www.nature.com/nphoton

Related Content

American College of Radiology Releases New Patient-Oriented Appropriateness Criteria Summaries
News | Patient Engagement | January 19, 2018
January 19, 2018 — New Appropriateness Criteria (AC) Patient Summaries from the American College of Radiology (ACR) c
National Clinical Decision Support Company (NDSC) has an exclusive deal with the American College of Radiology (ACR) to provide medical imaging appropriate use criteria (AUC).

National Clinical Decision Support Company (NDSC) has an exclusive deal with the American College of Radiology (ACR) to provide medical imaging appropriate use criteria (AUC). 

Feature | Clinical Decision Support | January 18, 2018
January 18, 2018 — Change Healthcare announced the acquisition of National Decision Support Company (NDSC), a leader
Philips Introduces Technology Maximizer Program for Imaging Equipment Upgrades
Technology | Imaging | January 17, 2018
January 17, 2018 — Philips recently announced the launch of Technology Maximizer, a cross-modality program designed t
New Vascular Ultrasound Registry Looks to Enhance Patient Care
News | Cardiovascular Ultrasound | January 17, 2018
The Society for Vascular Ultrasound (SVU), the Society for Vascular Surgery (SVS) and Medstreaming-M2S announced the...
RSNA 2017 Celebrates Innovation in Radiology
News | Imaging | January 15, 2018
January 15, 2018 — The Radiological Society of North America’s...
Sponsored Content | Videos | Ultrasound Imaging | January 11, 2018
Mindray recently featured a new upgrade for its premium Resona 7 ultrasound system at the Radiological Society of North...

Size comparison between 3-D printed prosthesis implant and a penny.

News | 3-D Printing | January 11, 2018
January 11, 2018 — Researchers using...
RSNA 2017 technical exhibits, expo floor, showing new radiology technology advances.
Feature | RSNA 2017 | January 11, 2018
January 11, 2018 — Here is a list of some of the key clinical study presentations, articles on trends and videos from
The artificial intelligence (AI) smart algorithm onboard the Infervision stroke product calculates the volume of bleed on the basis of multiple brain CT slices.

The AI smart algorithm onboard the Infervision stroke product calculates the volume of bleed on the basis of multiple brain CT slices. The size of the bleed volume indicates the urgency and type of treatment required.

Feature | Artificial Intelligence | January 10, 2018 | Greg Freiherr
Exhibitors at the 2017 Radiological Society of North American (RSNA) meeting rode the...
Overlay Init