News | Artificial Intelligence | July 10, 2020

Infervision Receives FDA Clearance for the InferRead Lung CT.AI

Infervision's newly FDA approved CT lung AI application sets a new standard

Infervision's newly FDA approved CT lung AI application sets a new standard

July 10, 2020 — Infervision announced U.S. Food and Drug Administration (FDA) 510(K) clearance of the InferRead Lung CT.AI product, which uses the state-of-the-art artificial intelligence and deep learning technology to automatically perform lung segmentation, along with accurately identifying and labeling nodules of different types. InferRead Lung CT.AI is designed to support concurrent reading and can aid radiologists in pulmonary nodule detection during the review of chest computed tomography (CT) scans, increasing accuracy and efficiency.  With five years of international clinical use, Infervision's InferRead Lung CT.AI application is a robust and powerful tool to assist the radiologist.

InferRead Lung CT.AI is currently in use at over 380 hospitals and imaging centers globally. More than 55,000 cases daily are being processed by the system and over 19 million patients have already benefited from this advanced AI technology. "Fast, workflow friendly, and accurate are the three key areas we have emphasized during product development. We're very excited to be able to make our InferRead Lung CT.AI solution available to the North American market. Our clients tell us it has great potential to help provide improved outcomes for providers and patients alike," said Matt Deng, Ph.D., Director of Infervision North America. The Company offers the system under a number of pricing models to make it easy to acquire.

The company predicts the system may also be of great benefit to lung cancer screening (LCS) programs across the nation. Lung cancer is the second most common cancer in both men and women in the U.S. Survival rates are 60% in five years if discovered at an early stage. However, the survival rate is lower than 10% if the disease progresses to later stages without timely follow-up and treatment. The Lung Cancer Screening program has been designed to encourage the early diagnosis and treatment of the high-risk population meeting certain criteria. The screening process involves Low-dose CT (LDCT) scans to determine any presence of lung nodules or early-stage lung disease. However small nodules can be very difficult to detect and missed diagnoses are not uncommon.

"The tremendous potential for lung cancer screening to reduce mortality in the U.S. is very much unrealized due to a combination of reasons.  Based on our experience reviewing the algorithm for the past several months and my observations of its extensive use and testing internationally, I believe that Infervision's InferRead Lung CT.AI application can serve as a robust lung nodule "spell-checker" with the potential to improve diagnostic accuracy, reduce reading times, and integrate with the image review workflow," said Eliot Siegel, M.D., Professor and Vice Chair of research information systems in radiology at the University of Maryland School of Medicine.

InferRead Lung CT.AI is now FDA cleared, and has also received the CE mark in Europe. "This is the first FDA clearance for our deep-learning-based chest CT algorithm and it will lead the way to better integration of advanced A.I. solutions to help the healthcare clinical workflow in the region," according to Deng. "This marks a great start in the North American market, and we are expecting to provide more high-performance AI tools in the near future."

For more information: global.infervision.com

Related Content

The use of CT and X-ray in the assessment and treatment plan for President Trump underscores the critical role that medical imaging must play in the fight against COVID-19

A COVID-19 chest CT heat map from RADlogics

News | Artificial Intelligence | October 13, 2020
October 13, 2020 — Given recent high-profile cases of...
Visual technology company, EIizo, has showcased its work with the world-renowned National Gallery, after monitors from its ColorEdge product line were used to document and investigate part of its extensive collection.
News | Flat Panel Displays | October 08, 2020
November 8, 2020 — Visual technology company, EIizo, has showcased its work with the world-renowned...
A, Sagittal reformatted bone window CT image of thoracic spine shows wedge-shaped deformity at T6 and subtle superior endplate deformities at T5 and T8. Arrows denote deformities. B, Color-coded dual-energy CT shows only T8 deformity is associated with bone marrow edema; T5 and T6 deformities likely represent chronic fractures. Arrows denote deformities.

A, Sagittal reformatted bone window CT image of thoracic spine shows wedge-shaped deformity at T6 and subtle superior endplate deformities at T5 and T8. Arrows denote deformities. B, Color-coded dual-energy CT shows only T8 deformity is associated with bone marrow edema; T5 and T6 deformities likely represent chronic fractures. Arrows denote deformities.

News | Computed Tomography (CT) | October 06, 2020
The Galan 3T and Orian 1.5T magnetic resonance imaging (MRI) platforms, both with Advanced intelligent Clear-IQ Engine (AiCE) Deep Learning Reconstruction (DLR) and Compressed SPEEDER, will be featured at RSNA 2020.

Vantage Galan 3T

News | RSNA | October 02, 2020
October 2, 2020 — 
Girls in Tech, a global non-profit bringing the world together through education and experiences, is teaming up with McKesson, a global leader in healthcare supply chain management solutions, retail pharmacy, community oncology and specialty care, and healthcare information solutions, for a global hackathon to design innovative solutions for those impacted by breast cancer.

Getty Images

News | Women's Health | October 02, 2020
October 2, 2020 — Girls in Tech, a global non-profit bringing
These MRI scans show diffuse white matter abnormality (DWMA). The top three panels display raw MRI images from very preterm infants born at 27 weeks (left), 26 weeks (center) and 31 weeks (right) gestation.

These MRI scans show diffuse white matter abnormality (DWMA). The top three panels display raw MRI images from very preterm infants born at 27 weeks (left), 26 weeks (center) and 31 weeks (right) gestation. Higher signal intensity can be seen in the central white matter, particularly for the 31-week gestation infant. The bottom panels display the corresponding slices with objectively segmented DWMA in yellow. The 27-week infant (left) was diagnosed with mild DWMA, the 26-week infant (center) was diagnosed with moderate DWMA, and the 31-week infant had severe DWMA. Image courtesy of Cincinnati Children's and Nature Scientific Reports

News | Magnetic Resonance Imaging (MRI) | October 01, 2020
October 1, 2020 — As many as 70% of very premature infants (born earlier than 32 weeks gestation) show signs of white