News | Radiology Business | July 20, 2020

The Industry Mourns the Loss of Sanjiv Sam Gambhir, M.D., Ph.D.

The radiology and molecular imaging fields mourn the loss of another brilliant leader, Sanjiv Sam Gambhir, M.D., Ph.D.

Sanjiv Sam Gambhir, M.D., Ph.D.

July 20, 2020 — The radiology and molecular imaging fields mourn the loss of another brilliant leader. Sanjiv Sam Gambhir, M.D., Ph.D., director of the Molecular Imaging Program at Stanford and the Chairman of the Department of Radiology at Stanford University School of Medicine, has died from cancer at age 57. He is known for his work in early cancer detection and advancing molecular imaging, which is potentially vital in detecting and diagnosing metabolic diseases such as cancer, as well as neurological and cardiovascular diseases.

Gambhir received numerous awards, medals, and honors for his work in advancing Molecular Imaging, Nuclear Medicine, and early cancer detection. Some of his recent honors include the IEEE Marie Sklodowska-Curie Award, IEEE Advancing Technology for Humanity in 2019, and the Distinguished Investigator Award, 7th Annual Academy for Radiology and Biomedical Imaging in 2018. On the day his death was announced, he also received Stanford’s highest honor, the Dean’s Medal for Academic Excellence reserved for those whose scientific, medical, or humanitarian work has advanced the mission of Stanford Medicine, according to a report in Indica News.

Related Content

A new report from the RSNA COVID-19 Task Force addresses the impact of the epidemic on private radiology practices

Getty Images

News | Coronavirus (COVID-19) | July 17, 2020
July 17, 2020 — ...
"Our study demonstrates that a real-world lung cancer screening can perform similar to randomized controlled trials in regard to important performance metrics," the UPenn authors of this AJR article concluded. Image courtesy of American Journal of Roentgenology (AJR)

"Our study demonstrates that a real-world lung cancer screening can perform similar to randomized controlled trials in regard to important performance metrics," the UPenn authors of this AJR article concluded. Image courtesy of American Journal of Roentgenology (AJR)

News | Lung Imaging | July 17, 2020
July 17, 2020 — An online first accepted...
PSMA PET/CT accurately detects recurrent prostate cancer in 67-year-old man. 18F-DCFPyL-PSMA PET/CT shows extensive, intensely PSMA-avid local recurrence in prostate (bottom row; solid arrow) in keeping with the known tumor recurrence in the prostate. Right: PET shows extensive, intensely PSMA-avid local recurrence in prostate (top row; solid arrow) and a solitary bone metastasis in left rib 2 (bottom row; dotted arrow). Image courtesy of Ur Metser, et al.

PSMA PET/CT accurately detects recurrent prostate cancer in 67-year-old man. 18F-DCFPyL-PSMA PET/CT shows extensive, intensely PSMA-avid local recurrence in prostate (bottom row; solid arrow) in keeping with the known tumor recurrence in the prostate. Right: PET shows extensive, intensely PSMA-avid local recurrence in prostate (top row; solid arrow) and a solitary bone metastasis in left rib 2 (bottom row; dotted arrow). Image courtesy of Ur Metser, et al.

News | PET-CT | July 16, 2020
July 16, 2020 — New research confirms the high impact of...
Total-body dynamic 18F-FDG PET imaging with the uEXPLORER scanner allows us to monitor the spatiotemporal distribution of glucose concentration in metastatic tumors in the entire body (a). As compared to a typical clinical standardized uptake value image (b), the parametric image of FDG influx rate (Ki) can achieve higher lesion-to-background (e.g., the liver) contrast. In addition to glucose metabolism imaging by Ki, total-body dynamic PET also enables multiparametric characterization of tumors and organs

Total-body dynamic 18F-FDG PET imaging with the uEXPLORER scanner allows us to monitor the spatiotemporal distribution of glucose concentration in metastatic tumors in the entire body (a). As compared to a typical clinical standardized uptake value image (b), the parametric image of FDG influx rate (Ki) can achieve higher lesion-to-background (e.g., the liver) contrast. In addition to glucose metabolism imaging by Ki, total-body dynamic PET also enables multiparametric characterization of tumors and organs using additional physiologically important parameters, for example, glucose transport rate K1 (d), across the entire body. Image courtesy of G.B. Wang, M. Parikh, L. Nardo, et al., University of California Davis, Calif.

News | PET Imaging | July 16, 2020
July 16, 2020 — Results from the first...
Breathe Easy Bus from CHI Memorial in Chattanooga, TN. Image courtesy of CHI Memorial in Chattanooga, TN

Breathe Easy Bus from CHI Memorial in Chattanooga, TN. Image courtesy of CHI Memorial in Chattanooga, TN

News | Lung Imaging | July 15, 2020
June 15, 2020 — A mobile platform for lung cancer screening
The Mindways Solid phantom with volume of interest in the quality assurance phantom (red circles, left side). A participant's noncontrast-enhanced axial CT (right side) with volume of interest (yellow circles) in the trabecular bone compartment of three vertebrae for bone mineral density measurements. Image courtesy of Radiological Society of North America

The Mindways Solid phantom with volume of interest in the quality assurance phantom (red circles, left side). A participant's noncontrast-enhanced axial CT (right side) with volume of interest (yellow circles) in the trabecular bone compartment of three vertebrae for bone mineral density measurements. Image courtesy of Radiological Society of North America

News | Cardiac Imaging | July 15, 2020
July 15, 2020 — ...
News | Information Technology | July 14, 2020
July 14, 2020 — The COVID-19 pandemic caused hea
Artificial intelligence (AI)-assisted software was used to identify inflammatory tissues in lung and automatically segment inflammatory lesions. Three-dimensional image shows regions of COVID-19 pneumonia in lung through AI postprocessing. Image courtesy of the American Journal of Roentgenology (AJR)

Artificial intelligence (AI)-assisted software was used to identify inflammatory tissues in lung and automatically segment inflammatory lesions. Three-dimensional image shows regions of COVID-19 pneumonia in lung through AI postprocessing. Image courtesy of the American Journal of Roentgenology (AJR)

News | Coronavirus (COVID-19) | July 10, 2020
July 10, 2020 — An open-access Ameri