News | October 17, 2014

IMRIS Horseshoe Headrest Named Life Sciences Alley New Technology Showcase Winner

Headrest provides non-pinned patient head support with Visius Surgical Theatre

 IMRIS Horseshoe Headrest

October 17, 2014 — IMRIS Inc. today announced that its horseshoe headrest has been selected as one of 10 New Technology Showcase Winners by Twin Cities-based Life Sciences Alley (LSA), the nation's largest regional medical industry association. The first magnetic resonance (MR)-safe and computed tomography (CT)-compatible horseshoe headrest was introduced in February and will be among the products featured at the LSA Health Technology Leadership Conference on Nov. 19 in Minneapolis.

The horseshoe headrest provides non-pinned patient head support in prone, lateral, and supine positions during head, neck and cervical spine surgeries within the Visius Surgical Theatre, where use of a head fixation device (HFD) — a clamp-like device — is not desirable because the skull is too fragile for pinning. These patients may be babies whose skulls are still soft or older patients with weakened skull bones.

The headrest also was specially designed for use with the new IMRIS InSitu wireless coil, a sterile, wireless, ultra-lightweight and disposable imaging coil that eliminates the need to manage cables and heavy imaging coils typically draped and removed between intraoperative scans.

Inside a Visius Surgical Theatre equipped with either high-field intraoperative MRI (iMRI) or 64-slice intraoperative computed tomography (iCT), surgeons have on-demand access to real-time, diagnostic quality imaging during the procedure and from the operating room table as the scanner moves to the patient on ceiling-mounted rails. Visius iMRI provides neurosurgeons the ability to assess and decide to perform further resection for removing as much tumor as possible by clearly visualizing tumor and healthy brain tissue which otherwise are hard to differentiate.

For more information: www.lifesciencealley.com

Related Content

#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2

Getty Images

Feature | Coronavirus (COVID-19) | April 03, 2020 | By Melinda Taschetta-Millane and Dave Fornell
In an effort to keep the imaging field updated on the latest information being released on coronavirus (COVID-19), th
Recommended best practices for nuclear imaging departments under the COVIF-19 pandemic have been issues by the ASNC and SNMMI. #COVID19 #ASNC #SNMMI #Coronavirus #SARScov2
News | Coronavirus (COVID-19) | April 03, 2020
April 3, 2020 — A new guidance document on best practices to maintain safety and minimize contamination in nuclear im
An example of Philips’ TrueVue technology, which offers photo-realistic rendering and the ability to change the location of the lighting source on 3-D ultrasound images. In this example of two Amplazer transcatheter septal occluder devices in the heart, the operator demonstrating the product was able to push the lighting source behind the devices into the other chamber of the heart. This illuminated a hole that was still present that the occluders did not seal.

An example of Philips’ TrueVue technology, which offers photo-realistic rendering and the ability to change the location of the lighting source on 3-D ultrasound images. In this example of two Amplazer transcatheter septal occluder devices in the heart, the operator demonstrating the product was able to push the lighting source behind the devices into the other chamber of the heart. This illuminated a hole that was still present that the occluders did not seal. Photo by Dave Fornell

Feature | Radiology Imaging | April 02, 2020 | By Katie Caron
A new year — and decade — offers the opportunity to reflect on the advancements and challenges of years gone by and p
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus

Getty Images

Feature | Coronavirus (COVID-19) | April 02, 2020 | Jilan Liu and HIMSS Greater China Team
Information technologies have played a pivotal role in China’s response to the novel coronavirus...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 Updated CT scoring criteria from AJR considers both lobe involvement and changes in CT findings to quantitatively and accurately evaluate the progression of COVID-19 pneumonia

CT scoring criteria were applied to images from sequential chest CT examinations. A, Initial chest CT image obtained 2 days after onset of symptoms shows small region of subpleural ground-glass opacities in right lower lobe, for CT score of 1. B, Chest CT image obtained on day 3 of treatment shows slightly enlarged region of subpleural ground-glass opacities with partial crazy-paving pattern and consolidation, for CT score of 3. C, Chest CT image obtained on day 5 of treatment shows partial resolution of consolidation, for CT score of 2. D, Chest CT image obtained on day 14 of treatment shows continued resolution of consolidation with minimal residual ground-glass opacities, for CT score of 1. Image courtesy of American Journal of Roentgenology (AJR)

News | Computed Tomography (CT) | April 02, 2020
April 2, 2020 — Updated computed t...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 the company is now offering a suite of AI solutions Vuno Med-LungQuant and Vuno Med-Chest X-ray for COVID-19, encompassing both lung X-ray and computed tomography (CT) modalities respectively all at once
News | Artificial Intelligence | April 02, 2020
April 2, 2020 — In the face of the COVID-19 pand
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 New studies use SIRD model to forecast COVID-19 spread; examine patient CT scans to correlate clinical features with mortality

Fig 1. A sample scoring on CT images of a 63-year-old woman from mortality group demonstrated a total score of 63. It was calculated as: for upper zone (A), 3 (consolidation) × 3 (50–75% distribution) × 2 (both right and left lungs) + 2 (ground glass opacity) ×1 (< 25% distribution) × 2 (both right and left lungs); for middle zone (B), 3 (consolidation) × 2 (25–50% distribution) × 2 (both right and left lungs) + 2 (ground glass opacity) × 2 (25–50% distribution) × 2 (both right and left lungs); for lower zone (C), 3 (consolidation) × (2 (25–50% distribution of the right lung) + 3 (50–75% distribution of the left lung)) + 2 (ground glass opacity) × (2 (25–50% distribution of the right lung) + 1 (< 25% distribution of the left lung)) Yuan et al, 2020 (CC BY 4.0)

News | Coronavirus (COVID-19) | April 01, 2020
April 1, 2020 — A new study, ...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 Company emphasizes faster, more advanced CTs, making imaging easier for COVID-19 patients
News | Computed Tomography (CT) | April 01, 2020
April 1, 2020 — United Imaging, a global leader in advanc