News | Nuclear Imaging | March 21, 2019

Improving Molecular Imaging Using a Deep Learning Approach

New technique has the potential to improve the quality and speed of imaging

Improving Molecular Imaging Using a Deep Learning Approach

March 21, 2019  — Generating comprehensive molecular images of organs and tumors in living organisms can be performed at ultra-fast speed using a new deep learning approach to image reconstruction developed by researchers at Rensselaer Polytechnic Institute.

The research team’s new technique has the potential to vastly improve the quality and speed of imaging in live subjects and was the focus of an article recently published in Light: Science and Applications, a Nature journal.1

Compressed sensing-based imaging is a signal processing technique that can be used to create images based on a limited set of point measurements. Recently, a Rensselaer research team proposed a novel instrumental approach to leverage this methodology to acquire comprehensive molecular data sets, as reported in Nature Photonics.2 While that approach produced more complete images, processing the data and forming an image could take hours.

This latest methodology developed at Rensselaer builds on the previous advancement and has the potential to produce real-time images, while also improving the quality and usefulness of the images produced. This could facilitate the development of personalized drugs, improve clinical diagnostics or identify tissue to be excised.

In addition to providing an overall snapshot of the subject being examined, including the organs or tumors that researchers have visually targeted with the help of fluorescence, this imaging process can reveal information about the successful intracellular delivery of drugs by measuring the decay rate of the fluorescence.

To enable almost real-time visualization of molecular events, the research team has leveraged the latest developments in artificial intelligence. The vastly improved image reconstruction is accomplished using a deep learning approach. Deep learning is a complex set of algorithms designed to teach a computer to recognize and classify data. Specifically, this team developed a convolutional neural network architecture that the Rensselaer researchers call Net-FLICS (fluorescence lifetime imaging with compressed sensing).

“This technique is very promising in getting a more accurate diagnosis and treatment,” said Pingkun Yan, co-director of the Biomedical Imaging Center at Rensselaer. “This technology can help a doctor better visualize where a tumor is and its exact size. They can then precisely cut off the tumor instead of cutting a larger part and spare the healthy, normal tissue.”

Yan developed this approach with corresponding author Xavier Intes, the other co-director of the Biomedical Imaging Center at Rensselaer, which is part of the Rensselaer Center for Biotechnology and Interdisciplinary Studies. Doctoral students Marien Ochoa and Ruoyang Yao supported the research.

“At the end, the goal is to translate these to a clinical setting. Usually when you have clinical systems you want to be as fast as possible,” said Ochoa, as she reflected on the speed with which this new technique allows researchers to capture these images.

Further development is required before this new technology can be used in a clinical setting. However, its progress has been accelerated by incorporating simulated data based on modeling, a particular specialty for Intes and his lab.

“For deep learning usually you need a very large amount of data for training, but for this system we don’t have that luxury yet because it’s a very new system,” said Yan.

He said that the team’s research also shows that modeling can innovatively be used in imaging, accurately extending the model to the real experimental data.

For more information: www.nature.com/lsa

 

References

1. Yao R., Ochoa M., Yan P., Intes X. Net-FLICS: fast quantitative wide-field fluorescence lifetime imaging with compressed sensing – a deep learning approach. Light: Science and Applications, March 6, 2019. https://doi.org/10.1038/s41377-019-0138-x

2. Pian Q., Yao R., Sinsuebphon N., Intes X. Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging. Nature Photonics, June 5, 2017.

Related Content

IBA (Ion Beam Applications S.A., EURONEXT), a world leader in particle accelerator technology, and SCK CEN (Belgian Nuclear Research Center) announced a strategic R&D partnership to enable the production of Actinimum-225 (225Ac), a novel radioisotope which has significant potential in the treatment of cancer.
News | Radiation Oncology | September 17, 2021
September 17, 2021 — IBA (Ion Beam Applications S.A., EURONEXT), a world leader in particle accelerator technology, a
Strategies to help guide nuclear radiology teams at various healthcare systems in 2021 and beyond
Feature | Nuclear Imaging | September 16, 2021 | By Staff of the American Society of Nuclear Cardiology (ASNC)
A year after COVID-19 turned the world upside do
This is an example of 3-D ultrasound imaging on a breast, designed to help increase efficiency and diagnostic accuracy in any practice. Image courtesy of Hologic.

This is an example of TriVu ultrasound imaging on a breast, designed to help increase efficiency and diagnostic accuracy in any practice. Image courtesy of Hologic.

Feature | Breast Imaging | September 15, 2021 | By Jennifer Meade
The...
While the Mammography Quality Standards Act (MQSA) and the introduction of EQUIP (Enhancing Quality Using the Inspection Program) have been successful in standardizing and enhancing mammographic imaging quality, inadequate breast positioning can dramatically impact the ability of radiologists and technicians to quickly and accurately detect breast cancer and potentially malignant lesions in their patients

Getty Images

Feature | Mammography | September 15, 2021 | By Christopher Austin, M.D. and Randy D. Hicks, M.D., MBA
To get more flexibility and cost savings from storage, healthcare organizations are increasing their investments in the cloud
Feature | Information Technology | September 15, 2021 | By Kumar Goswami
Healthcare organizations today are storing petabytes of medical imaging data — lab slides,...
Revenues for teleradiology reading service providers are forecast to follow a similar profile over this period.

Outlook for 2021 and Beyond. As displayed in the figure below, these six market drivers are projected to result in teleradiology reading service volumes increasing by 21% in 2021 and nearly doubling by 2025. Revenues for teleradiology reading service providers are forecast to follow a similar profile over this period.

Feature | Teleradiology | September 15, 2021 | By Arun Gill
The closely tied relationship between...
Cloud services have been utilized within healthcare organizations for more than a decade. Now with the growth of artificial intelligence (AI) it is very common to see organizations adopting cloud services.

Getty Images

Feature | Information Technology | September 14, 2021 | By Jef Williams
As with all imaging technologies, COVID-19 is expected to continue to negatively impact the market.

Courtesy of Grand View Research

Feature | Magnetic Resonance Imaging (MRI) | September 14, 2021 | By Melinda Taschetta-Millane