News | June 03, 2010

Image-Guided RNA Agents Target Specific Organs

June 3, 2010 – A joint research agreement will explore the targeted delivery of experimental therapeutics based on ribonucleic acid (RNA) interference (RNAi). Philips Healthcare and RXi Pharmaceuticals Corp. say imaging compounds based on RNAi represent a promising new class of drugs for the targeted treatment of a number of diseases including cancer and cardiovascular disease.

Currently, one of the greatest challenges in developing RNAi-based therapeutics is finding ways to deliver them to their target while keeping them fully active. The joint research program between Philips and RXi will address this challenge by exploring, in preclinical studies, the possibility of using RXi’s sd-rxRNA (self-delivering rxRNA) in conjunction with Philips’ ultrasound technology to achieve the targeted delivery and monitoring of RNAi-based compounds in cells.

“As part of Philips’ holistic care cycle approach to patient care, we are constantly exploring novel concepts for the diagnosis, treatment and follow-up of diseases. Our decision to jointly research RNAi-based therapies with RXi is driven by our belief that patient care will ultimately benefit from the combination of novel drugs and advanced medical imaging technologies,” said Henk van Houten, senior vice president of Philips Research and head of the health care research program. “The development of ultrasound techniques that could noninvasively trigger the delivery of new drug formats such as RNAi therapeutics at a targeted location opens up exciting possibilities for advancing personalized medicine.”

"The most important technological challenges that need to be addressed in order to realize the promise of RNAi-based approaches to treating various human disorders are efficient and safe delivery of the RNAi compounds to the targeted organs, and uptake of these compounds by relevant cells,” said Noah D. Beerman, President and CEO at RXi. “By combining RXi’s proprietary sd-rxRNA molecules, which have unique properties of ‘self delivery’, and Philips’ ultrasound technologies, we will be working together to achieve targeted and specific delivery to relevant organs and tissues, which could potentially boost the efficacy of RNAi-based disease treatments.”

Diseases, as well as their potential cures, are associated with specific processes at a cellular and molecular level. RNAi technology is a breakthrough in understanding how genes are turned on and off and represents a new approach to drug development. Therapeutics that leverage this breakthrough technology can potentially target the cause of specific diseases by silencing harmful genes and preventing disease-causing proteins being produced.

To realize this potential, it is important to first optimize RNAi compounds in a way that confers them with the required drug properties and second to enhance their delivery to cells that express these harmful genes. RXi’s proprietary rxRNA molecules are chemically modified to provide them with important properties such as stability in biological fluids, low stimulatory effect on the immune system and high target specificity. Philips’ image-guided, ultrasound-mediated drug delivery platform offers researchers a unique approach to investigating the delivery of various therapeutic molecules across blood vessel barriers and facilitating their uptake in cells. It capitalizes upon Philips’ existing expertise in medical imaging technologies for diagnosis, therapy planning and minimally-invasive medical procedures.

Each company will contribute proprietary technologies, resources and expertise to test novel approaches for the targeted delivery of RXi’s sd-rxRNA.

For more information: www.philips.com, www.rxipharma.com

Related Content

NIH Study of Brain Energy Patterns Provides New Insights into Alcohol Effects

NIH scientists present a new method for combining measures of brain activity (left) and glucose consumption (right) to study regional specialization and to better understand the effects of alcohol on the human brain. Image courtesy of Ehsan Shokri-Kojori, Ph.D., of NIAAA.

News | Neuro Imaging | March 22, 2019
March 22, 2019 — Assessing the patterns of energy use and neuronal activity simultaneously in the human brain improve
At #ACC.19, Siemens unveiled a version of its go.Top platform optimized for cardiovascular imaging. The newly packaged scanner can generate the data needed to do CT-based FFR (fractional flow reserve).

At #ACC.19, Siemens unveiled a version of its go.Top platform optimized for cardiovascular imaging. The newly packaged scanner can generate the data needed to do CT-based FFR (fractional flow reserve). Photo by Greg Freiherr

Feature | Cardiac Imaging | March 22, 2019 | By Greg Freiherr
Reflecting a trend toward the increased use of...
Older Biologic Age Linked to Elevated Breast Cancer Risk
News | Women's Health | March 19, 2019
Biologic age, a DNA-based estimate of a person’s age, is associated with future development of breast cancer, according...
HeartFlow Analysis Successfully Stratifies Heart Disease Patients at One Year
News | CT Angiography (CTA) | March 19, 2019
Late-breaking results confirm the HeartFlow FFRct (fractional flow reserve computed tomography) Analysis enables...
PET Scans Show Biomarkers Could Spare Some Breast Cancer Patients from Chemotherapy
News | PET Imaging | March 18, 2019
A new study positron emission tomography (PET) scans has identified a biomarker that may accurately predict which...
SyncVision iFR Co-registration from Philips Healthcare maps iFR pressure readings onto angiogram.

SyncVision iFR Co-registration from Philips Healthcare maps iFR pressure readings onto angiogram. Results from an international study presented at #ACC19 show that pressure readings in coronary arteries may identify locations of stenoses remaining after cardiac cath interventions.

Feature | Cardiac Imaging | March 18, 2019 | By Greg Freiherr
As many as one in four patients who undergo cath lab interventions can benefit from a technology that identifies the
Non-Contrast MRI Effective in Monitoring MS Patients
News | Neuro Imaging | March 18, 2019
Brain magnetic resonance imaging (MRI) without contrast agent is just as effective as the contrast-enhanced approach...
Jennifer N. A. Silva, M.D., a pediatric cardiologist at Washington University School of Medicine in Saint Louis, Mo., describes “mixed reality” at ACC19 Future Hub.

Jennifer N. A. Silva, M.D., a pediatric cardiologist at Washington University School of Medicine in Saint Louis, Mo., describes “mixed reality” at ACC19 Future Hub.

Feature | Cardiac Imaging | March 17, 2019 | By Greg Freiherr
Virtual reality (VR) and its less immersive kin, augmented reality (AR), are gaining traction in some medical applica