News | MRI Breast | November 18, 2020

Ikonopedia Releases Enhanced Breast MRI Reporting Module

Reduces the complexity of reporting for screening and diagnostic MRI exams to deliver time-saving and patient safety benefits

Reduces the complexity of reporting for screening and diagnostic MRI eams to deliver time-saving and patient safety benefits

November 18, 2020 — Ikonopedia announced the release of its newly updated next-generation breast MRI reporting module. The intuitive new interface is designed to reduce the complexity of reporting for screening and diagnostic MRI exams and is compliant to the ACR BI-RADS Atlas Fifth Edition.

The new breast MRI module leverages the intuitive icon-based interface of Ikonopedia's mammography and ultrasound structured reporting modalities to deliver a variety of physician efficiency and patient safety benefits.  Reporting capabilities have been expanded and instinctual organization guides radiologists through BI-RADS criteria to reach an accurate, BI-RADS-compliant, and natural sounding description of lesions. New functionality in the MRI diagnostic modality includes ten lesion assessment categories that adhere to BI-RADS.  The MRI screening modality has been updated to include a new contrast selection dialog as well as to synchronize with the new MRI diagnostic modality.

The enhanced breast MRI module has also been optimized for AI input such as Qlarity Imaging's QuantX, the first U.S. Food and Drug Administration (FDA)-cleared computer-aided diagnosis software for breast MRI analysis.

"We've been very pleased with the flexibility and efficiency gains from the intuitive user interface in the updated breast MRI reporting tools, particularly the ability to easily describe trackable entries while maintaining BI-RADS verbiage to create complex reports," said Erica Guzalo, Section Chief, Breast Imaging, Sinai Health Chicago.  "I also appreciate Ikonopedia's dedication to continually help solve issues and implement new ideas that are beneficial to us, as users."

"As we, as an industry, move towards more broadly adopting risk-based screening based on a women's personal risk and breast density, the utilization of breast MRI will continue to grow," said Michael Vendrell, M.D., co-founder of Ikonopedia.  "This new module streamlines reporting workflow to deliver more accurate diagnoses, reduces the risk of reporting errors, and save time as radiologists face increasing exam volume and data complexity.  These are critical new capabilities to improve patient care and safety." 

Ikonopedia is an innovative structured breast reporting and MQSA management system designed to dramatically improve reporting efficiency, and optimize facility operations. All findings are saved as discrete data which allows Ikonopedia to prevent errors, maintain BI-RADS-compliant language and automate many time-consuming processes.  Ikonopedia makes it possible to eliminate laterality errors, automatically choose exam-appropriate patient letters and pull forward findings from past exams along with many other time-saving features. 

Ikonopedia's integrated risk assessment tool is now available in dozens of languages and risk data is used to create alerts for the radiologist, populate the clinical section of the report, and automatically update the patient letter. A high-risk patient alert identifies patients with a 20% or greater lifetime risk and information about the score is instantly viewable.

For more information: www.ikonopedia.com

Related Content

Guerbet announced the launch of OptiProtect 3S, a new range of technical services for its injection solutions. OptiProtect 3S is designed to support imaging centers in the daily use and protection of their injection solutions.
News | Contrast Media Injectors | February 25, 2021
February 25, 2021 — Guerbet announced the launch of ...
Advanced technologies and applications such as point-of-care, pediatrics, dry-magnets, compact MRI and fusion imaging are driving global market
News | Magnetic Resonance Imaging (MRI) | February 24, 2021
February 24, 2021 — Frost & Sullivan's recent analysis, Technological Advancements and Emerging Applications in t
55-year-old woman who underwent screening mammogram and ultrasound 7 days after first COVID-19 vaccination dose. Screening mammogram and US demonstrated unilateral left axillary lymph node with cortical thickness of 5 mm on ultrasound (not shown). BI-RADS category 0 was assigned. Ultrasound from diagnostic work-up performed 7 days later showed no change in lymph node size. BI-RADS 3 was assigned. #COVIDvaccine #COVID19

55-year-old woman who underwent screening mammogram and ultrasound 7 days after first COVID-19 vaccination dose. Screening mammogram and US demonstrated unilateral left axillary lymph node with cortical thickness of 5 mm on ultrasound (not shown). BI-RADS category 0 was assigned. Ultrasound from diagnostic work-up performed 7 days later showed no change in lymph node size. BI-RADS 3 was assigned.

News | Breast Imaging | February 24, 2021
Detroit-based magnetic resonance imaging (MRI) technology company SpinTech, Inc. has acquired medical-imaging research and technology developer Magnetic Resonance Innovations, Inc. (MR Innovations).
News | Magnetic Resonance Imaging (MRI) | February 24, 2021
February 24, 2021 — Detroit-based magnetic resonance...
Findings indicate that PPC and GG are highly predictive of overall upstaging by PSMA PET/CT for patients with high-risk prostate cancer

Image courtesy of UCLA Health

News | PET-CT | February 23, 2021
February 23, 2021 — A...
F-18 FES PET images of patients with ER+/PR+/HER2- invasive ductal carcinoma. Left panel: Progressive disease seen at the 8-week time-point in a patient on sequential therapy. Right panel: Stable disease through all 3 time-points, remaining on study therapy for 6.7 months until disease progression on combined vorinostat aromatase inhibitor therapy. Image created by Lanell M Peterson, Research Scientist, University of Washington Medical Oncology, Seattle WA.

F-18 FES PET images of patients with ER+/PR+/HER2- invasive ductal carcinoma. Left panel: Progressive disease seen at the 8-week time-point in a patient on sequential therapy. Right panel: Stable disease through all 3 time-points, remaining on study therapy for 6.7 months until disease progression on combined vorinostat aromatase inhibitor therapy. Image created by Lanell M Peterson, Research Scientist, University of Washington Medical Oncology, Seattle WA.

News | Molecular Imaging | February 22, 2021
February 22, 2021 — Molecular imaging
Axial FLAIR MR image shows T2 prolongation in bilateral middle cerebellar peduncles (arrows). Findings were associated with restricted diffusion and areas of T1 hypointense signal without enhancement or abnormal susceptibility. Image courtesy of American Roentgen Ray Society (ARRS), American Journal of Roentgenology (AJR)

Axial FLAIR MR image shows T2 prolongation in bilateral middle cerebellar peduncles (arrows). Findings were associated with restricted diffusion and areas of T1 hypointense signal without enhancement or abnormal susceptibility. Image courtesy of American Roentgen Ray Society (ARRS), American Journal of Roentgenology (AJR)

News | Coronavirus (COVID-19) | February 22, 2021
February 22, 2021 — According to an...
Examples of the imaging performance of XPCI-CT (b,e) compared to conventional specimen radiography (a,d) and benchmarked against histopathology (c,f). he top row focuses on the similarity between the XPCI-CT slice in (b) and the histological slice in (c). Arrow 1 indicates margin involvement, arrow 2 a variation in density in the internal structure of the tumour mass, arrow 3 tumour-induced inflammation. All this is confirmed by the histological slice in (c), and hardly visible in the conventional image in

Examples of the imaging performance of XPCI-CT (b,e) compared to conventional specimen radiography (a,d) and benchmarked against histopathology (c,f). he top row focuses on the similarity between the XPCI-CT slice in (b) and the histological slice in (c). Arrow 1 indicates margin involvement, arrow 2 a variation in density in the internal structure of the tumour mass, arrow 3 tumour-induced inflammation. All this is confirmed by the histological slice in (c), and hardly visible in the conventional image in (a). The bottom row focuses on the detection of small calcifications, a key feature in DCIS. These are undetectable in (d), detected in (e), enhanced in the maximum intensity projection (MIP) image at the bottom of (f), and confirmed by histopathology in the top part of (f). The scale bar [shown in (b) and (e)] is the same for all images apart from (f), which has its own scale. Red arrows in (e) and (f) indicate the microcalcifications. Image courtesy of Professor Alessandro Olivo

News | Breast Imaging | February 22, 2021
February 22, 2021 — A new X-ray imaging scanne