News | Magnetic Resonance Imaging (MRI) | July 01, 2016

Huge Helium Discovery Safeguards Future Supply for MRI Scanners

Revelation of one of the world’s biggest helium gas fields in Africa mitigates concerns about dwindling global supplies

MRI scanners, helium gas field discovery, Africa, future supply

July 1, 2016 — Helium is essential for many modern technologies, including magnetic resonance imaging (MRI) scanners. Now, researchers have developed systematic search methods to discover one of the world’s biggest helium gas fields, associated with volcanoes in the Tanzanian Rift Valley in Africa.

This is the first time that helium has been found intentionally —previous finds were by accident — and opens the way for further large finds. This work was reported at the Goldschmidt conference in Yokohama, Japan.

Recent years have seen worries about the over-exploitation of this extremely limited, finite, valuable natural resource, with fears that supply could not be guaranteed into the medium to long-term future. In 2015, the British Medical Association expressed concern that helium supplies may have to be regulated.

Now a team from Oxford and Durham universities, jointly led by Prof.Chris Ballentine and Prof. Jon Gluyas, has worked together with a helium exploration company, Helium One Ltd, to help uncover a huge helium resource in Tanzania.

The team applied methodologies used in oil exploration in their search for helium. Normally oil exploration takes into consideration a range of factors, such as the rocks sourcing the oil, and how the oil is released into underground reservoirs. Crucially, the team found that being close to a volcano may be key, as the volcanic activity acts as the releasing mechanism for helium gas.

Ballentine said, "By combining our understanding of helium geochemistry with seismic images of gas trapping structures, independent experts have calculated a probable resource of 54 Billion Cubic Feet (BCf) in just one part of the rift valley. This is around the size of 600,000 Olympic sized swimming pools with helium gas. That's nearly seven times the total amount of helium consumed globally every year and enough to fill over 1.2 million medical MRI scanners when converted to liquid helium." While developing the technique in 2015, members of the same research group postulated significant helium resources in the Rocky Mountains.

"Now we understand the techniques, we anticipate more large helium finds", said Ballentine, "This will help safeguard society's future helium needs."

 

Read the article "World War I German Zeppelin Raids Helped Enable Today’s MRI Systems - MRI imaging benefits from the legacy of post-WWI legislation."

 

For more information: www.goldschmidt.info

Related Content

Early diagnosis of cancer is one of the highest-priority problem for the healthcare system, because it is critical for overall treatment success and saving patients' lives. Diffusion-weighted magnetic resonance imaging (DWI) may be used to detect a malignancy in various tissues and organs. It has the advantage of providing insight into the diffusion of water molecules in body tissues without exposing patients to radiation.

DWI of the phantom with polyvinylpyrrolidone (PVP) solutions (b value 500 s/mm2). Image courtesy of Kristina Sergunova et al.

News | Magnetic Resonance Imaging (MRI) | June 02, 2020
June 2, 2020 — Early diagnosis of cancer is one of the highest-priority problem for the healthcare system, because it
AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire)

AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire).

News | Artificial Intelligence | May 29, 2020
May 29, 2020 — GE Healthcare announced U.S.
United Imaging's uMR OMEGA is designed to provide greater access to magnetic resonance imaging (MRI) with the world’s first ultra-wide 75-cm bore 3T MRI.
News | Magnetic Resonance Imaging (MRI) | May 27, 2020
May 27, 2020 — United Imaging's...
A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue

A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue. Image courtesy of Xiandoing Xue, UC Davis

News | Magnetic Resonance Imaging (MRI) | May 26, 2020
May 26, 2020 — Researchers at the University of California, Davis offers a...
Researchers from Tokyo Metropolitan University have surveyed the amount of gadolinium found in river water in Tokyo. Gadolinium is contained in contrast agents given to patients undergoing medical magnetic resonance imaging (MRI) scans, and it has been shown in labs to become toxic when exposed to ultraviolet rays. The researchers found significantly elevated levels, particularly near water treatment plants, highlighting the need for new public policy and removal technologies as MRI become even more commonp

Samples were taken along rivers around Tokyo. Measurements of rare earth element quantities indicate a clearly elevated amount of gadolinium compared to that in natural shale. Graphics courtesy of Tokyo Metropolitan University

News | Magnetic Resonance Imaging (MRI) | May 26, 2020
May 26, 2020 — Researchers from Tokyo Metropolitan...
Advanced imaging data exchange is now live in Colorado due to the partnership of Health Images and the Colorado Regional Health Information Organization

Getty Images

News | Radiology Business | May 18, 2020
May 18, 2020 — 
Experimental Protocol and Representative MRI of Brains at Various Key Points in That Protocol.

Experimental Protocol and Representative MRI of Brains at Various Key Points in That Protocol. (A) Experimental timeline. (B) Representative T2WI (using an 11.7T MRI) of the brain of a postnatal day (PND) 11 pup, 1 day after inducing left HII and prior to hNSC transplantation. Note the beginning of an increasingly intense “water signal” (white) on the left (“HII lesion”). (C) Representative T2WI (using an 11.7T MRI) 3 days post-HII, shortly after implantation of SPIO pre-labeled hNSCs into the contralateral cerebral ventricle (“Lateral Vent”). Note the “HII lesion” on the left becoming hyperintense (white) and the black signal void of the SPIO-labeled hNSCs in the lateral ventricle (black arrow). Red arrows denote the needle track. In contrast to what occurs in the intact brain (Figure S4), in a brain subjected to left HII, the implanted SPIO-labeled hNSCs (black signal void) (black arrow) migrate from the right (“R”) to the left (“L”) hemisphere to enter the lesion. (D and E) Shown here (using a 4.7T MRI) are SPIO-labeled hNSCs (black signal void) (black arrow) at 1 month post-implantation into the contralateral ventricle (D) and, in the same representative animal, at 3 months post-implantation (E)–stably integrated and surrounding a much-reduced residual lesion, with no interval enlargement of the graft or ventricles.

News | Magnetic Resonance Imaging (MRI) | May 13, 2020
May 13, 2020 — Scientists at Sanford Burnham Prebys Medical Discov...
Axial (A) and coronal (B) CT of the abdomen and pelvis with IV contrast in a 57-year-old man with a high clinical suspicion for bowel ischemia. There was generalized small bowel distension and segmental thickening (arrows), with adjacent mesenteric congestion (thin arrow in B), and a small volume of ascites (* in B). Findings are nonspecific but suggestive of early ischemia or infection.

Axial (A) and coronal (B) CT of the abdomen and pelvis with IV contrast in a 57-year-old man with a high clinical suspicion for bowel ischemia. There was generalized small bowel distension and segmental thickening (arrows), with adjacent mesenteric congestion (thin arrow in B), and a small volume of ascites (* in B). Findings are nonspecific but suggestive of early ischemia or infection. Image courtesy of RSNA

News | Coronavirus (COVID-19) | May 11, 2020
May 11, 2020 — Patients with COVID-19 can have b
Whole body diffusion-weighted magnetic resonance imaging (DW MRI) may aid in the assessment of cancer treatment response in children and youth at much lower levels of radiation than current approaches, suggests a small study funded by the National Institutes of Health.
News | Pediatric Imaging | May 05, 2020
May 5, 2020 — Whole body diffusion-weighted magnetic resonance imaging (DW MRI) may aid in the assessment of...
Figure 4 for the study. Images of a 65-year-old man (patient 6). (a) Cardiac MRI perfusion shows perfusion deficit of anterior/anterolateral wall attributed to left anterior descending artery/left circumflex artery (*). (b) CT coronary angiography. (c) Coronary angiography, left anterior oblique projection with caudal angulation. (d) Three-dimensional image fusion helped refine diagnosis: perfusion deficits (*) were most likely caused by narrow first diagonal branch and its first, stented side branch.

Figure 4 for the study. Images of a 65-year-old man (patient 6). (a) Cardiac MRI perfusion shows perfusion deficit of anterior/anterolateral wall attributed to left anterior descending artery/left circumflex artery (*). (b) CT coronary angiography. (c) Coronary angiography, left anterior oblique projection with caudal angulation. (d) Three-dimensional image fusion helped refine diagnosis: perfusion deficits (*) were most likely caused by narrow first diagonal branch and its first, stented side branch (arrowhead). Retrospectively, denoted lesion could also be found at CT coronary angiography and coronary angiography (arrowheads in b and c, respectively). CT FFR = CT-derived fractional flow reserve, LGE = late gadolinium enhancement. Image courtesy of RSNA, Radiology.

News | Cardiac Imaging | May 04, 2020
May 4, 2020 – A new technique that combines computed tomography (CT) and magnetic resonance imaging MRI can bolster c