News | March 20, 2015

How Green Tea Could Help Improve MRIs

Scientists report in the journal ACS Applied Materials & Interfaces that they successfully used compounds from green tea to help image cancer tumors in mice

\"Assamgreentea\" by Badagnani

\"Assamgreentea\" by Badagnani

Green tea's popularity has grown quickly in recent years. Its fans can drink it, enjoy its flavor in their ice cream and slather it on their skin with lotions infused with it. Now, the tea could have a new, unexpected role -- to improve the image quality of MRIs. Scientists report in the journal ACS Applied Materials & Interfaces that they successfully used compounds from green tea to help image cancer tumors in mice.

Sanjay Mathur and colleagues note that recent research has revealed the potential usefulness of nanoparticles -- iron oxide in particular -- to make biomedical imaging better. But the nanoparticles have their disadvantages. They tend to cluster together easily and need help getting to their destinations in the body. To address these issues, researchers have recently tried attaching natural nutrients to the nanoparticles. Mathur's team wanted to see if compounds from green tea, which research suggests has anticancer and anti-inflammatory properties, could play this role.

Using a simple, one-step process, the researchers coated iron-oxide nanoparticles with green-tea compounds called catechins and administered them to mice with cancer. MRIs demonstrated that the novel imaging agents gathered in tumor cells and showed a strong contrast from surrounding non-tumor cells. The researchers conclude that the catechin-coated nanoparticles are promising candidates for use in MRIs and related applications.

For more information: http://pubs.acs.org

Related Content

Houston Methodist Hospital Enters Multi-Year Technology and Research Agreement With Siemens Healthineers
News | Imaging | August 17, 2017
Houston Methodist Hospital and Siemens Healthineers have entered into a multi-year agreement to bring cutting-edge...
Patient Complexity, Subspecialization Impact List Prices for Radiologists' Services
News | Business | August 15, 2017
A new study by the Harvey L. Neiman Health Policy Institute finds that patient condition complexity and...
Upcoming radiology conferences, meetings and events.
News | August 14, 2017
ITN maintains a comprehensive listing of radiology specialty meetings on its website at ...
MRI Reveals Striking Brain Differences in People with Genetic Autism

Example images for a control participant , a deletion carrier, and a duplication carrier. In the sagittal image of the deletion carrier, the thick corpus callosum, dens and craniocervical abnormality, and cerebellar ectopia are shown. For the duplication carrier, the sagittal image shows the thin corpus callosum and the axial image shows the increased ventricle size and decreased white matter volume. Image courtesy of the Radiological Society of North America (RSNA).

News | Neuro Imaging | August 09, 2017
August 9, 2017 — In the first major study of its kind, researchers using magnetic...
ACR Establishes Education Committee for Patient- and Family-Centered Care
News | Patient Engagement | August 09, 2017
Members of the new Education Committee of the American College of Radiology (ACR) Commission on Patient- and Family-...
ACR Annual Conference on Quality and Safety Offers Strategies for Radiology Practices
News | Business | August 08, 2017
The American College of Radiology (ACR) Annual Conference on Quality and Safety, scheduled for Oct. 13-14 in Boston,...
Clinical Data Supports Use of Xoft System for Endometrial Cancer
News | Brachytherapy Systems | August 03, 2017
Researchers presented clinical data supporting use of the Xoft Axxent Electronic Brachytherapy (eBx) System for the...
brain with chronic traumatic injury
News | Magnetic Resonance Imaging (MRI) | August 02, 2017
Fighters are exposed to repeated mild traumatic brain injury (mTBI), which has been associated with neurodegenerative...
NIH-funded scientists have discovered that Parkinson’s disease increases the amount of “free” water in a particular brain area

NIH-funded scientists have discovered that Parkinson’s disease increases the amount of “free” water in a particular brain area. Image courtesy of David Vaillancourt, Ph.D., University of Florida.

News | Neuro Imaging | July 31, 2017
Scientists at the University of Florida have discovered a new method of observing the brain changes caused by Parkinson...
Overlay Init