News | Magnetic Resonance Imaging (MRI) | July 03, 2017

German Workshop Highlights Possibilities of Perfusion MRI

Training workshop at Fraunhofer MEVIS explores ability of modality to capture blood flow circulation for diagnostic purposes

German Workshop Highlights Possibilities of Perfusion MRI

July 3, 2017 — When diagnosing strokes and heart diseases or looking at tumors, perfusion magnetic resonance imaging (MRI) offers a gentler way to capture the blood flow circulation in the organs. However, the method is far from being implemented to its full potential at many clinics. The Fraunhofer Institute for Medical Image Computing MEVIS in Bremen, Germany organized a workshop entitled “Measurement of Perfusion and Capillary Exchange” from June 21-23 to promote adoption of the method. The event provided information about its applications and the current state of research.

MRI allows a gentler way of taking 3-D images of the inside the body. One specific variant is perfusion MRI. It visualizes the perfusion of organs and tumors. “Perfusion measurements deliver important information about an organ’s condition,” said Fraunhofer MEVIS researcher and workshop initiator Matthias Günther. “It enables clinicians to diagnose at an early stage how well an organ is functioning.” 

Physicians can also measure the perfusion with other methods, such as ultrasound, computed tomography (CT) and positron emission tomography (PET), but perfusion MRI offers several advantages. Unlike ultrasound, it visualizes the blood flow through even very fine blood vessels. Other than CT and PET, this method is not based on X-rays or radioactive substances that can damage the tissue. 

Today, perfusion MRI is primarily applied when diagnosing strokes and tumors. It measures which brain areas receive insufficient blood supply after a stroke occurs. It can also assess the viability and functionality of the liver and kidneys. Furthermore, the method can visualize which regions of a tumor are supplied with the most blood. In these areas, the ulcer grows the fastest, but is also more receptive to therapeutic treatment – helpful information for radiation therapists. 

To perform perfusion MRI, physicians usually administer a contrast agent, which flows through the vessels with the blood and can be seen on the MR images due to its contrast. Among other things, the method can prove if a blood vessel in the brain has become porous due to a disease. In such cases, the contrast agent molecules can slip through the pores. The workshop was designed to bring the participants – primarily physicists, engineers, computer scientists and physicians – up to date and give them a foundation to further develop and apply the techniques in the clinical workflow. 

A new alternative that does not require contrast agents has recently emerged, called arterial spin labeling. An MR scanner magnetically tags the blood flowing through an organ. The scanner ‘flips’ the original orientation of the atoms in the magnetic field. Then, it follows the magnetically tagged blood on its way through the brain vessels. “The method without contrast agents is non-invasive and less stressful for patients,” said Günther. “For patients who are frequently examined, some contrast agents run the risk of accumulating in the body.”

In recent years, the researchers have made advances in developing the method without contrast agents. They were able to increase its efficiency and reduce the examination time from 15 to between 3 and 5 minutes. “As scientists, we believe that the method is now ready for clinical use,” said Günther. Still, the method is currently only sporadically used in the clinical workflow. 

“Despite its advantages, many clinics haven’t yet ventured into using the method,” explained Günther. “Our workshop should help ease concerns and contribute to making the method easier for physicians to apply.” Admittedly, operation and use are more challenging than standard MRI, and handling the new technique requires a certain degree of training. “With our workshop, we want to convince prospective users that learning the new method is worth the time invested.”

For more information: www.esmrmb.org

Related Content

Hyperfine Research, Inc. announced that it has received U.S. Food and Drug Administration (FDA) 510(k) clearance for the world’s first bedside Magnetic Resonance Imaging (MRI) system

Hyperfine's point-of-care MRI wheels directly to the patient’s bedside, plugs into a standard electrical wall outlet, and is controlled via a wireless tablet. Photo courtesy of Business Wire

News | Magnetic Resonance Imaging (MRI) | February 12, 2020
February 12, 2020 — Hyperfine Research, Inc. announced that i
The magnetic resonance imaging (MRI) contrast agents market is expected to grow rapidly

Image courtesy of GE Healthcare

News | Magnetic Resonance Imaging (MRI) | February 11, 2020
February 11, 2020 — The magnetic resonance imaging (MRI) contrast agents market is expected to grow rapidly in the fo
Gadolinium-based contrast agents

UT Dallas faculty members who collaborated with Dr. Jeremiah Gassensmith (center, back), associate professor of chemistry and biochemistry, include Dr. Lloyd Lumata (left, back), assistant professor of physics, and Dr. Steven Nielsen, associate professor of chemistry. Chemistry graduate students in Gassensmith’s lab include (from left, front) Oliva Brohlin, Arezoo Shahrivarkevishahi and Laurel Hagge.

News | Contrast Media | February 06, 2020
February 6, 2020 — University of Texas at Dallas researchers
Qynapse, a medical technology company, announced that it received U.S. Food and Drug Administration (FDA) 510(k) clearance for its QyScore software
News | Information Technology | February 04, 2020
February 4, 2020 — Qynapse, a medical technology company, anno
RSNA 2019

RSNA 2019

Feature | Radiology Imaging | January 31, 2020 | By Greg Freiherr
The founder of Gonzo journalism thought
This image is of an 80 kg woman with a newly diagnosed IDH-wildtype glioblastoma

This image is of an 80 kg woman with a newly diagnosed IDH-wildtype glioblastoma. The quarter dose image on the left was obtained after the administration of 4 ml of MultiHance. Subsequently, an additional 12 ml of MultiHance was administered and the cumulative full dose image in the center was obtained. The image on the right was rendered following artificial intelligence processing of the 4 ml image using eGad genetic algorithms. This image has the quality of triple dose gadolinium even though only one quarter dose gadolinium was given.

Feature | Contrast Media Injectors | January 30, 2020 | By Matthew Kuhn, M.D., FACR
Gadolinium-based contrast agents (...
The researchers used high resolution cross-sectional imaging with CT or MRI to assess 225 men with abdominal aortic aneurysm. Follow-up lasted, on average, more than three years.  Slightly more than half of patients had an intraluminal thrombus. The aneurysms of those with intraluminal thrombus were larger at baseline and grew by a rate of 2 mm per year, twice as fast as the 1 mm per year growth rate in people without intraluminal thrombus.
News | Computed Tomography (CT) | January 29, 2020
January 29, 2020 – The presence of a blood clot on the wall of the aorta in people with...
Gadolinium based contrast dye in brain MRI

Gadolinium contrast agents (GBCAs) are partly retained in the brain, raising safety concerns, as seen in this MRI.

News | Contrast Media | January 17, 2020
January 17, 2020 — Bracco Diagnostics Inc., the U.
MR Solutions cryogen free preclinical MRI
News | Magnetic Resonance Imaging (MRI) | January 09, 2020
January 9, 2020 — MR Solutions is continuing to expand its support network