News | Magnetic Resonance Imaging (MRI) | November 18, 2015

German Project Takes Real-time MR Images of the Beating Heart

Fraunhofer-Gesellschaft and Max-Planck-Gesellschaft joined for a successful project on fast and easy examination of heart patients

Fraunhofer MEVIS, MRI, CaFuR, real-time MRI, beating heart

The software developed by Fraunhofer MEVIS automatically identifies the breathing and heart contraction phases in the data independent of the ECG information. This allows for a fast and easy examination of heart patients. Image courtesy of Fraunhofer MEVIS.

November 18, 2015 – Today, magnetic resonance imaging (MRI) allows more gentle, precise and cost-effective heart disease diagnosis. However, the method has limitations when examining children and patients with cardiac arrhythmia. A joint project of the Fraunhofer Institute for Medical Image Computing MEVIS and the Max Planck Institute for Biophysical Chemistry promises a solution for these limitations. Experts were able to accelerate the image acquisition process and expand the method’s applicability.

The importance of MRI for diagnosing cardiovascular diseases is steadily growing. The method does not expose patients to X-rays, and, unlike a heart catheter, is non-invasive. Furthermore, MRI delivers information that no other imaging method can. Doing so, it can help evaluate the condition of myocardial tissue. Because of these advantages, more and more heart images are acquired with MRI – the German Cardiac Society also recommends increasing the use of MR imaging for heart diagnostics.

Until now, the use of this method has come with limitations: The image acquisition process is not fast enough to monitor heart movements caused by breathing and heartbeat directly. To counteract movement from breathing, patients have to hold their breath during the examination. At the same time, they are connected to an electrocardiogram (ECG) that records the heartbeat. This has been the only way to match the separate images to the appropriate heartbeat phase during subsequent image reconstruction.

These limitations cause problems for particular patient groups. Small children who cannot control their breathing have to be sedated for the procedure, and for those with cardiac arrhythmia, the ECG cannot deliver reliable data for image reconstruction.

The CaFuR (Cardiac Function in Real Time) project, a recently completed joint venture of the Fraunhofer-Gesellschaft and the Max Planck Society, provides a remedy for these problems. The Biomedizinische NMR Forschungs GmbH at the Max Planck Institute for Biophysical Chemistry in Göttingen and the Fraunhofer Institute for Medical Image Computing MEVIS in Bremen both participated in the project. Experts in Göttingen, working under Prof. Jens Frahm, developed a method for real-time MR imaging.

“Images with extremely shortened measurement time enable acquisition of films of the beating heart with 30 to 50 images per second, free breathing and no use of ECG. This method allows physicians to observe the heart muscle or blood flow reactions under physical strain directly,” explained Frahm.

Fraunhofer MEVIS developed the required image analysis methods, including an algorithm that automatically identifies the breathing and heart contraction phases in the data independent of the ECG information. “One challenge we had to overcome was the substantial amount of data,” said Dr. -Ing. Anja Hennemuth, project manager at MEVIS. “Up to 8 gigabytes of image data can be acquired during an examination, which is impossible for doctors to manually analyze.”

A further problem, caused by accelerated image acquisition, is decreased contrast compared to traditional MRI. The brightness of blood and tissue can vary, impeding reliable differentiation. “Classical methods are of no help in this aspect,” stressed Hennemuth. “We had to develop new, self-learning algorithms that can reliably recognize the heart muscle even with varying contrasts.”

The method has proven itself in first trials. Pediatric cardiologists already use it in their research. Thanks to the new method, children can now lie awake in the MR scanner and pedal a stationary recumbent bicycle, enabling heart examination under a defined strain. Omitting the use of ECG reduces image acquisition time by up to 50 percent, providing a more comfortable patient experience and saving insurance costs. Furthermore, the method allows gathering novel diagnostic information and precise characterization of individual heart function for patients with cardiac arrhythmia.

Clinical testing at the University Clinic in Göttingen has already started and will soon commence in other centers. “There is no need for new hardware, only a software extension for existing MRI devices,” said Hennemuth. “We hope that the method will be ready for use next year.”

For more information: www.mevis.fraunhofer.de

Related Content

Washington University in St. Louis Begins Clinical Treatments With ViewRay MRIdian Linac
News | Image Guided Radiation Therapy (IGRT) | June 14, 2018
June 14, 2018 — The Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine in S
Reduced hippocampal volume on MRI

This figure shows reduced hippocampal volume over the course of 6 years as seen on progressive volumetric analysis and also coronal MRI evaluations (arrows).Progressive volume loss in the mesial temporal lobe on MRI is a characteristic imaging feature of AD. This patient was a case of Alzheimer’s Dementia.

 

News | Neuro Imaging | June 12, 2018
According to a UCLA Medical Center study, a new technology shows the potential to help doctors better determine when...
High Prevalence of Atherosclerosis Found in Lower Risk Patients
News | Magnetic Resonance Imaging (MRI) | June 08, 2018
Whole-body magnetic resonance angiography (MRA) found a surprisingly high prevalence of atherosclerosis in people...
Philips Receives FDA 510(k) for Ingenia Elition MR System
Technology | Magnetic Resonance Imaging (MRI) | June 07, 2018
Philips announced that it has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for its...
Sponsored Content | Videos | Artificial Intelligence | May 25, 2018
Change Healthcare is looking at how to apply AI into enterprise imaging by using algorithms to change data into knowl
New Studies Highlight MRI Use for Prostate Cancer Screening and Management
News | Magnetic Resonance Imaging (MRI) | May 21, 2018
Three new studies presented at the 113th annual meeting of the American Urological Association (AUA) highlight the...
MRI "Glove" Provides New Look at Hand Anatomy

An experiment showed that a glove-shaped detector could yield images of bones, cartilage, and muscles interacting as a hand 'plays piano.' Traditionally, MRI had required patients to remain strictly motionless.Image courtesy of Nature Biomedical Engineering; Bei Zhang, Martijn Cloos, Daniel Sodickson

News | Magnetic Resonance Imaging (MRI) | May 17, 2018
A new kind of magnetic resonance imaging (MRI) component in the shape of a glove delivers the first clear images of...
FDA Clears Medic Vision's iQMR MRI Image Enhancement Technology

Image courtesy of Medic Vision Imaging Solutions

Technology | Magnetic Resonance Imaging (MRI) | May 15, 2018
May 15, 2018 — Medic Vision Imaging Solutions Ltd. announced that the U.S.
Impaired Brain Pathways May Cause Attention Problems After Stroke
News | Neuro Imaging | May 10, 2018
Damage to some of the pathways that carry information throughout the brain may be responsible for attention deficit in...
Overlay Init