News | SPECT-CT | May 05, 2016

GE Announces First U.S. Install of General Purpose Digital SPECT/CT

Company says ultra-high resolution Discovery NM/CT 670 CZT system can reduce injected dose or scan time by up to 50 percent

GE Healthcare, general purpose digital SPECT/CT, Discovery NM/CT 670 CZT, Barnes-Jewish Hospital, first U.S. install

May 5, 2016 — Doctors and researchers at Barnes-Jewish Hospital and Washington University in St. Louis may be able to better diagnose and monitor diseases at a functional level with GE Healthcare’s next-generation SPECT/CT system, Discovery NM/CT 670 CZT. GE claims it is the world’s first general purpose, ultra-high resolution single photon emission computed tomography (SPECT)/CT imaging system, with a new digital detector powered by cadmium zinc telluride (CZT) technology.

SPECT/CT exams are performed to assess the functionality of organs and play a key role in the diagnosis and monitoring of a multitude of diseases. GE Healthcare’s new system is equipped with CZT technology that enables direct conversion of photons into a digital signal, therefore making the technology more efficient. Until now, CZT technology has been limited to organ-dedicated devices, whereas Discovery NM/CT 670 CZT is the first to allow doctors to perform exams on every organ, including whole-body exams.

This technology is intended to help improve clinical efficacy and patient experience. Improved efficacy will allow doctors to detect smaller lesions and quantify them more accurately due to the increased spatial and contrast resolution. This may have a significant role in assessing and monitoring responses to therapies. Having the ability to complete multiple scans in a single visit and reduce the dose injected or the scan time by 50 percent will improve patient experience. Optimizing the duration of the exams or the injected dose represents not only an improvement for the patient experience, but also helps increase the operational and financial efficiency of hospitals.

“We were able to do an in-field upgrade to the Discovery NM/CT 670 CZT, which was a faster and more efficient way to enable us to leverage the new CZT detector. We believe this new system will allow us to see improvements in lesion detectability and will increase the utility of SPECT/CT; we will also look to see how we can reduce scan time, lower dose or both, while maintaining image quality,” said Barry A. Siegel, M.D., professor of radiology and medicine, senior vice-chair and division director of nuclear medicine at Mallinckrodt Institute of Radiology at Washington University in St. Louis. “We look forward to doing research on SPECT/CT quantification, as accurate and reproducible quantification will be increasingly important in nuclear medicine.”

Researchers have identified clinical scenarios where the combination of multiple SPECT tracers could aid physicians in diagnosing and giving much better and more specific reports in difficult patient conditions. However, performing such multi-isotope exams is quite challenging on conventional cameras. Multiple isotope exams could offer a greater insight into the diagnosis and monitoring responses to treatments. With the Discovery NM/CT 670 CZT, clinicians will be able to simultaneously visualize and analyze multiple physiological processes in a patient, gaining insights into multiple dimensions of the patient’s anatomy and physiology at the same time using the hybrid SPECT/CT.

For more information: www.gehealthcare.com

Related Content

NIH Study of Brain Energy Patterns Provides New Insights into Alcohol Effects

NIH scientists present a new method for combining measures of brain activity (left) and glucose consumption (right) to study regional specialization and to better understand the effects of alcohol on the human brain. Image courtesy of Ehsan Shokri-Kojori, Ph.D., of NIAAA.

News | Neuro Imaging | March 22, 2019
March 22, 2019 — Assessing the patterns of energy use and neuronal activity simultaneously in the human brain improve
Improving Molecular Imaging Using a Deep Learning Approach
News | Nuclear Imaging | March 21, 2019
Generating comprehensive molecular images of organs and tumors in living organisms can be performed at ultra-fast speed...
PET Scans Show Biomarkers Could Spare Some Breast Cancer Patients from Chemotherapy
News | PET Imaging | March 18, 2019
A new study positron emission tomography (PET) scans has identified a biomarker that may accurately predict which...
Researchers Create New Method for Developing Cancer Imaging Isotopes

Prototype fluidic system for zirconium-89 purification. Image taken through a hot cell window at the Department of Radiology, University of Washington. Image courtesy of Matthew O’Hara, Pacific Northwest National Laboratory

News | Radiopharmaceuticals and Tracers | March 14, 2019
A team of researchers at the University of Washington announced they developed a new automated system for producing...
Siemens Healthineers Announces First U.S. Install of Biograph Vision PET/CT
News | PET-CT | March 06, 2019
Siemens Healthineers’ new Biograph Vision positron emission tomography/computed tomography (PET/CT) system has been...
ImaginAb Enrolls First Patient in Phase II PET Agent Clinical Trial
News | Radiopharmaceuticals and Tracers | January 30, 2019
ImaginAb Inc. announced the enrollment of the first patient in the Phase II clinical trial of the company’s CD8+ T Cell...
FDA Clears United Imaging Healthcare uExplorer Total-Body Scanner
Technology | PET-CT | January 23, 2019
January 23, 2019 — United Imaging Healthcare (United Imaging) announced U.S.
MIM Software Inc. Receives FDA 510(k) Clearance for Molecular Radiotherapy Dosimetry
Technology | Nuclear Imaging | January 16, 2019
MIM Software Inc. received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for molecular radiotherapy...
Videos | SPECT-CT | December 12, 2018
This is a walk around of the new Spectrum Dynamics Veriton SPECT-CT nuclear imaging system introduced at the 2018 ...